Improved Classification for Compositional Data Using the α-transformation

Abstract

In compositional data analysis, an observation is a vector containing nonnegative values, only the relative sizes of which are considered to be of interest. Without loss of generality, a compositional vector can be taken to be a vector of proportions that sum to one. Data of this type arise in many areas including geology, archaeology, biology, economics and political science. In this paper we investigate methods for classification of compositional data. Our approach centers on the idea of using the α-transformation to transform the data and then to classify the transformed data via regularized discriminant analysis and the k-nearest neighbors algorithm. Using the α-transformation generalizes two rival approaches in compositional data analysis, one (when α=1) that treats the data as though they were Euclidean, ignoring the compositional constraint, and another (when α = 0) that employs Aitchison’s centered log-ratio transformation. A numerical study with several real datasets shows that whether using α = 1 or α = 0 gives better classification performance depends on the dataset, and moreover that using an intermediate value of α can sometimes give better performance than using either 1 or 0.

This is a preview of subscription content, log in to check access.

References

  1. AITCHISON, J. (1982), “The Statistical Analysis of Compositional Data”, Journal of the Royal Statistical Society: Series B, 44, 139–177.

    MathSciNet  MATH  Google Scholar 

  2. AITCHISON, J. (1983), “Principal Component Analysis of Compositional Data”, Biometrika, 70, 57–65.

    MathSciNet  Article  MATH  Google Scholar 

  3. AITCHISON, J. (1992), “On Criteria for Measures of Compositional Difference”, Mathematical Geology, 24, 365–379.

    MathSciNet  Article  MATH  Google Scholar 

  4. AITCHISON, J. (2003), The Statistical Analysis of Compositional Data (reprinted with additional material by The Blackburn Press), London, UK: Chapman & Hall.

    Google Scholar 

  5. AITCHISON, J., BARCELO-VIDAL, C., MARTIN-FERNANDEZ, J.A., and PAWLOWSKY-GLAHN, V. (2000), “Logratio Analysis and Compositional Distance”, Mathematical Geology, 32, 271–275.

    Article  MATH  Google Scholar 

  6. BAXTER,M.J. (2001), “Statistical Modelling of Artefact Compositional Data”, Archaeometry, 43, 131–147.

    Article  Google Scholar 

  7. BAXTER,M.J., BEARDAH, C. C., COOL, H. E.M., and JACKSON, C. M. (2005), “Compositional Data Analysis of Some Alkaline Glasses”, Mathematical Geology, 37, 183–196.

    Article  Google Scholar 

  8. BAXTER, M.J., and FREESTONE, I. C. (2006), “Log-Ratio Compositional Data Analysis in Archaeometry”, Archaeometry, 48, 511–531.

    Article  Google Scholar 

  9. BUTLER, A., and GLASBEY, C. (2008), “A Latent Gaussian Model for Compositional Data With Zeros”, Journal of the Royal Statistical Society: Series C, 57, 505–520.

    MathSciNet  Article  Google Scholar 

  10. DRDYEN, I.L., and MARDIA, K. V. (1998), Statistical Shape Analysis, New York: Wiley.

    Google Scholar 

  11. EGOZQUE, J.J., PAWLOWSKY-GLAHN, V., MATEU-FIGUERAS, G., and BARCELOVIDAL, C. (2003), “Isometric Logratio Transformations for Compositional Data Analysis”, Mathematical Geology, 35, 279–300.

    MathSciNet  Article  MATH  Google Scholar 

  12. ENDRES, D.M. and SCHINDELIN, J. E. (2003), “A New Metric for Probability Distributions”, IEEE Transactions on Information Theory, 49, 1858–1860.

    MathSciNet  Article  MATH  Google Scholar 

  13. FRY, J.M., FRY, T. R. L., and McLAREN, K. R. (2000), “Compositional Data Analysis and Zeros in Micro Data”, Applied Economics, 32, 953–959.

    Article  Google Scholar 

  14. GREENACRE, M. (2009), “Power Transformations in Correspondence Analysis”, Computational Statistics & Data Analysis, 53, 3107–3116.

    MathSciNet  Article  MATH  Google Scholar 

  15. GREENACRE, M. (2011), “Measuring Subcompositional Incoherence”, Mathematical Geosciences, 43, 681–693.

    Article  Google Scholar 

  16. GUEORGUIEVA, R., ROSENHECK, R., and ZELTERMAN, D. (2008), “Dirichlet Component Regression and Its Applications to Psychiatric Data”, Computational Statistics & Data Analysis, 52, 5344–5355.

    MathSciNet  Article  MATH  Google Scholar 

  17. HASTIE, T., TIBSHIRANI, R., and FRIEDMAN, J. (2001), The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Berlin: Springer.

    Google Scholar 

  18. IVERSON, S.J., FIELD, C., BOWEN, W.D., and BLANCHARD, W. (2004), “Quantitative Fatty Acid Signature Analysis: A New Method of Estimating Predator Diets”, Ecological Monographs, 74, 211–235.

    Article  Google Scholar 

  19. LANCASTER,H.O. (1965), “The Helmert Matrices”, American Mathematical Monthly, 72, 4–12.

    MathSciNet  Article  MATH  Google Scholar 

  20. LARROSA, J.M. (2003), “A Compositional Statistical Analysis of Capital Stock”, in Proceedings of the 1st Compositional Data Analysis Workshop, Girona, Spain.

    Google Scholar 

  21. NEOCLEOUS, T., AITKEN, C., and ZADORA, G. (2011), “Transformations for Compositional Data With Zeros With an Application to Forensic Evidence Evaluation”, Chemometrics and Intelligent Laboratory Systems, 109, 77–85.

    Article  Google Scholar 

  22. OSTERREICHER, F., and VAJDA, I. (2003), “A New Class of Metric Divergences on Probability Spaces and Its Applicability in Statistics”, Annals of the Institute of Statistical Mathematics, 55, 639–653.

    MathSciNet  Article  MATH  Google Scholar 

  23. OTERO, N., TOLOSANA-DELGADO, R., SOLER, A., PAWLOWSKY-GLAHN, V., and CANALS, A. (2005), “Relative vs. Absolute Statistical Analysis of Compositions: A Comparative Study of SurfaceWaters of aMediterranean River”, Water Research, 39, 1404–1414.

    Article  Google Scholar 

  24. PALAREA-ALBALADEJO, J., MARTIN-FERNANDEZ, J.A., and SOTO, J.A. (2012), “Dealing with Distances and Transformations for Fuzzy C-means Clustering of Compositional Data”, Journal of Classification, 29, 144–169.

    MathSciNet  Article  MATH  Google Scholar 

  25. RODRIGUES, P.C., and LIMA, A.T. (2009), “Analysis of an European Union Election Using Principal Component Analysis”, Statistical Papers, 50, 895–904.

    MathSciNet  Article  MATH  Google Scholar 

  26. SCEALY, J.L., and WELSH, A.H. (2011), “Regression for Compositional Data by Using Distributions Defined on the Hypersphere”, Journal of the Royal Statistical Society: Series B, 73, 351–375.

    MathSciNet  Article  Google Scholar 

  27. SCEALY, J.L., and WELSH, A.H. (2014), “Colours and Cocktails: Compositional Data Analysis: 2013 Lancaster Lecture”, Australian & New Zealand Journal of Statistics, 56, 145–169.

    MathSciNet  Article  MATH  Google Scholar 

  28. STEPHENS, M.A. (1982), ”Use of the Von Mises Distribution to Analyse Continuous Proportions”, Biometrika, 69, 197–203.

    MathSciNet  Article  Google Scholar 

  29. STEWART, C., and FIELD, C. (2011), “Managing the Essential Zeros in Quantitative Fatty Acid Signature Analysis”, Journal of Agricultural, Biological, and Environmental Statistics, 16, 45–69.

    MathSciNet  Article  MATH  Google Scholar 

  30. TSAGRIS, M.T., PRESTON, S., and WOOD, A. T. A. (2011), “A Data-Based Power Transformation for Compositional Data”, in Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain.

    Google Scholar 

  31. TSAGRIS, M., and ATHINEOU, G. (2016), Compositional: A Collection of R Functions for Compositional Data Analysis (R package version 1.2.5), https://cran.r-project.org/web/packages/Compositional/

  32. UC IRVINE MACHINE LEARNING REPOSITORY (2014), “Forensic Glass Dataset”, http://archive.ics.uci.edu/ml/datasets/Glass+Identification.

  33. WORONOW, A. (1997), “The Elusive Benefits of Logratios”, in Proceedings of the 3rd Annual Conference of the International Association for Mathematical Geology, Barcelona, Spain.

    Google Scholar 

  34. ZADORA, G., NEOCLEOUS, T., and AITKEN, C. (2010), “A Two-Level Model for Evidence Evaluation in the Presence of Zeros”, Journal of Forensic Sciences, 55, 371–384.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michail Tsagris.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 112 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsagris, M., Preston, S. & Wood, A.T.A. Improved Classification for Compositional Data Using the α-transformation. J Classif 33, 243–261 (2016). https://doi.org/10.1007/s00357-016-9207-5

Download citation

Keywords

  • Compositional data
  • Classification
  • α-transformation
  • α-metric
  • Jensen-Shannon divergence