Journal of Classification

, Volume 31, Issue 3, pp 274–295 | Cite as

Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?

  • Fionn MurtaghEmail author
  • Pierre Legendre


The Ward error sum of squares hierarchical clustering method has been very widely used since its first description by Ward in a 1963 publication. It has also been generalized in various ways. Two algorithms are found in the literature and software, both announcing that they implement the Ward clustering method. When applied to the same distance matrix, they produce different results. One algorithm preserves Ward’s criterion, the other does not. Our survey work and case studies will be useful for all those involved in developing software for data analysis using Ward’s hierarchical clustering method.


Hierarchical clustering Ward Lance-Williams Minimum variance Statistical software 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ANDERBERG, M.R. (1973), Cluster Analysis for Applications, New York: Academic.zbMATHGoogle Scholar
  2. BATAGELJ, V. (1988), “Generalized Ward and Related Clustering Problems”, in Classification and Related Methods of Data Analysis, ed. H.H. Bock, Amsterdam: North-Holland, pp. 67-74.Google Scholar
  3. BENZÉCRI, J.P. (1976), L’Analyse des Données, Tome 1, La Taxinomie (2nd ed.), Paris: Dunod.Google Scholar
  4. BRUYNOOGHE, M. (1977), “Méthodes Nouvelles en Classification Automatique des Données Taxinomiques Nombreuses”, Statistique et Analyse des Données, 3, 24-42.Google Scholar
  5. CAILLIEZ, F., and PAGÈS, J.-P. (1976), Introduction à l’Analyse des Données, SMASH (Société de Mathématiques Appliquées et Sciences Humaines).Google Scholar
  6. FISHER, R.A. (1936), “The Use of Multiple Measurements in Taxonomic Problems”, Annals of Eugenics, 7, 179-188.CrossRefGoogle Scholar
  7. GOWER, J.C. (1966), “Some Distance Properties of Latent Root and Vector Methods Used in Multivariate Analysis”, Biometrika, 53, 325-338.CrossRefzbMATHMathSciNetGoogle Scholar
  8. JAIN, A.K., and DUBES, R.C. (1988), Algorithms for Clustering Data, Englewood Cliffs NJ: Prentice-Hall.zbMATHGoogle Scholar
  9. JAMBU, M. (1978), Classification Automatique pour l’Analyse des Données. I. Méthodes et Algorithmes, Paris: Dunod.Google Scholar
  10. JAMBU, M. (1989), Exploration Informatique et Statistique des Données, Paris: Dunod.zbMATHGoogle Scholar
  11. KAUFMAN, L., and ROUSSEEUW, P.J. (1990), Finding Groups in Data: An Introduction to Cluster Analysis, New York: Wiley.CrossRefGoogle Scholar
  12. LANCE, G.N., and WILLIAMS, W.T. (1967), “A General Theory of Classificatory Sorting Strategies. 1. Hierarchical Systems”, Computer Journal, 9(4), 373-380.CrossRefGoogle Scholar
  13. LEGENDRE, P., and FORTIN, M.-J. (2010), “Comparison of the Mantel Test and Alter-native Approaches for Detecting Complex Relationships in the Spatial Analysis of Data”, Molecular Ecology Resources, 10, 831-844.CrossRefGoogle Scholar
  14. LEGENDRE, P. (2011), “const.clust Space- and Time-Constrained Clustering Pack-age”,
  15. LEGENDRE, P., and LEGENDRE, L. (2012), Numerical Ecology (3rd. English ed.), Amsterdam: Elsevier.Google Scholar
  16. LE ROUX, B., and ROUANET, H. (2004), Geometric Data Analysis: From Correspon dence Analysis to Structured Data Analysis, Dordrecht: Kluwer.Google Scholar
  17. MURTAGH, F. (1983), “A Survey of Recent Advances in Hierarchical Clustering Algorithms”, The Computer Journal, 26, 354-359.CrossRefzbMATHGoogle Scholar
  18. MURTAGH, F. (1985), Multidimensional Clustering Algorithms, Vienna: Physica-Verlag.zbMATHGoogle Scholar
  19. MURTAGH, F. (1992), “Comments on: Parallel Algorithms for Hierarchical Clustering and Cluster Validity, IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 1056-1057.CrossRefGoogle Scholar
  20. MURTAGH, F. (2000), “Multivariate Data Analysis Software and Resources”,
  21. MURTAGH, F. (2005), Correspondence Analysis and Data Coding with R and Java, Boca Raton FL: Chapman & Hall/CRC.CrossRefGoogle Scholar
  22. ORLÓCI, L. (1967), “An Agglomerative Method for Classification of Plant Communities, Journal of Ecology, 55, 193-206.CrossRefGoogle Scholar
  23. SZÉKELY, G.J., and RIZZO, M.L. (2005), “Hierarchical Clustering Via Joint Between-Within Distances: Extending Ward’s Minimum Variance Method”, Journal of Classification, 22(2), 151-183.CrossRefMathSciNetGoogle Scholar
  24. WARD, J.H. (1963), “Hierarchical Grouping to Optimize an Objective Function”, Journal of the American Statistical Association, 58, 236-244.CrossRefMathSciNetGoogle Scholar
  25. WISHART, D. (1969), “An Algorithm for Hierachical Classifications”, Biometrics 25, 165-170.CrossRefGoogle Scholar
  26. XPLORE (2007), Version 4.8, Collaborative Research Center 649, Humboldt-Universität, Berlin, Germany,

Copyright information

© Classification Society of North America 2014

Authors and Affiliations

  1. 1.School of Computer Science and Informatics, De Montfort UniversityLeicesterUK
  2. 2.Département de sciences biologiquesUniversité de MontréalMontréalCanada

Personalised recommendations