Advertisement

Journal of Classification

, Volume 31, Issue 1, pp 28–48 | Cite as

Distinguishing and Classifying from n-ary Properties

  • Pascal PréaEmail author
  • Monique Rolbert
Article

Abstract

We present a hierarchical classification based on n-ary relations of the entities. Starting from the finest partition that can be obtained from the attributes, we distinguish between entities having the same attributes by using relations between entities. The classification that we get is thus a refinement of this finest partition. It can be computed in O(n + m 2) space and O(n · p · m 5/2) time, where n is the number of entities, p the number of classes of the resulting hierarchy (p is the size of the output; p < 2n) and m the maximum number of relations an entity can have (usually, mn). So we can treat sets with millions of entities.

Keywords

Classification Data analysis Hierarchy Ultrametric Computational linguistics Generation of referring expressions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AGARWAL, S., LIM, J., ZELHIK-MANOR, L., PERONA, P., KRIEGMAN, D., and BELONGIE, S. (2005),“ Beyond Pairwise Clustering”, in Proceedings of the IEEE Computer Conference on Computer Vision and Pattern Recognition (Vol 2), IEEE Computer Society, pp. 838–845.Google Scholar
  2. ALT, H., BLUM, N., MEHLTON, K., and PAUL, M. (2001), “Computing a Maximal Cardinality Matching in a Bipartite Graph in Time O(n 1.5)”, Information Processing Letters, 37(4), 237–240.CrossRefGoogle Scholar
  3. BARTHÉLEMY, J.-P., and GUÉNOCHE, A. (1991), Trees and Proximity Representations, New York: Wiley.zbMATHGoogle Scholar
  4. CROITORU, M., and VAN DEEMTER, K. (2007), “A Conceptual Graph Approach to the Generation of Referring Expressions”, in Proceedings of the International Joint Conference on Artificial Intelligence, Burlington MA: Morgan Kaufman, pp. 2456–2461.Google Scholar
  5. DALE, R. (1989), “Cooking Up Referring Expressions”, in Proceedings of the Twenty-Seventh Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, pp. 68–75.Google Scholar
  6. DIATTA, J. (2004), “A Relation Between the Theory of Formal Concepts and Multiway Clustering”, Pattern Recognition Letters, 25, 1183–1189.CrossRefGoogle Scholar
  7. FISHER, R.A. (1936), “The Use of Multiple Measurements in Taxonomic Problems”, Annals of Eugenics, 7(2), 179–188.CrossRefGoogle Scholar
  8. GARDENT, C. (2002), “Generating Minimal Definite Descriptions”, in Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, pp. 96–103.Google Scholar
  9. GORDON, A.D. (1999), Classification, Boca Raton FL: Chapman & Hall.zbMATHGoogle Scholar
  10. HOPCROFT, J.E., and KARP, R.M. (1973), “An n 5/2 Algorithm for Maximum Matchings in Bipartite Graphs”, SIAM Journal on Computing, 2(4), 225–231.CrossRefzbMATHMathSciNetGoogle Scholar
  11. JARDINE, N., and SIBSON, R. (1971), Mathematical Taxonomy, New York: Wiley.zbMATHGoogle Scholar
  12. KHAN, I.H., VAN DEEMTER, K., RITCHIE, G., GATT A., and CLELAND, A.A. (2009), “A Hearer-Oriented Evaluation of Referring Expression Generation”, in Proceedings of the 12th European Workshop on Natural Language Generation, Association for Computational Linguistics, pp. 98–101.Google Scholar
  13. KRAHMER, E., VAN ERK, S., and VERLEG, A. (2003), “Graph-Based Generation of Referring Expressions”, Computational Linguistics, 29(1), 53–72.CrossRefzbMATHGoogle Scholar
  14. LECLERC DE BUFFON, G.-L. (1749), Histoire Naturelle, Générale et Particulière, avec la Description du Cabinet du Roy, available at www.buffon.cnrs.fr.
  15. MITCHELL, M., (2009), “Class-Based Ordering of Prenominal Modifiers”, in Proceedings of the 12th European Workshop on Natural Language Generation, Association for Computational Linguistics, pp. 50–57.Google Scholar
  16. OSBORNE, M.J. (2009), An Introduction to Game Theory, Oxford UK: Oxford University Press.Google Scholar
  17. PRÉA, P. (1994), “A Generalization of the Diameter Criterion for Clustering”, in New Approaches in Classification and Data Analysis, eds. E. Diday, Y. Lechevallier, M. Schader, P. Bertrand, and B. Burtschy, Berlin: Springer-Verlag, p.p 257–262.Google Scholar
  18. ROLBERT, M., and PRÉA, P. (2009), “Distinguishable Entities: Definitions and Properties”, Proceedings of the 12th European Workshop on Natural Language Generation, Association for Computational Linguistics, pp. 34–41.Google Scholar
  19. VAN DEEMTER, K. (2002), “Generating Referring Expressions: Boolean Extensions of the Incremental Algorithm”, Computational Linguistics, 28(1), 37–52.CrossRefzbMATHGoogle Scholar
  20. VAN DEEMTER, K., and KRAHMER, E. (2006), “Graphs and Booleans: On the Generation of Referring Expressions”, in Computing Meaning: Volume 3 (Studies in Linguistics and Philosophy), eds. H. Bunt and R. Muskens, New York: Springer, pp. 397–422.Google Scholar
  21. VON LINNÉ, C. (1735), Systema Naturæ, available at gallica.bnf.fr/ark:/12148/bpt6k99004c.
  22. ZADEH, L.A. (1965), “Fuzzy Sets”, Information and Control, 8, 338-353.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Classification Society of North America 2014

Authors and Affiliations

  1. 1.École Centrale Marseille and Laboratoire d’Informatique Fondamentale de MarseilleMarseilleFrance
  2. 2.Aix-Marseille Université and Laboratoire d’Informatique Fondamentale de MarseilleMarseilleFrance
  3. 3.LIF, Laboratoire d’Informatique Fondamentale de MarseilleCNRS UMR 7279, École Centrale Marseille, Technopôle de Château-GombertMarseille Cédex 20France
  4. 4.Aix-Marseile Université, Laboratoire d’Informatique Fondamentale de Marseille, LIF, CNRS UMR 7279Aix-en-ProvenceFrance

Personalised recommendations