Journal of Classification

, Volume 27, Issue 2, pp 158–172 | Cite as

An Algorithm for Computing Cutpoints in Finite Metric Spaces

  • Andreas Dress
  • Katharina T. Huber
  • Jacobus Koolen
  • Vincent Moulton
  • Andreas Spillner


The theory of the tight span, a cell complex that can be associated to every metric D, offers a unifying view on existing approaches for analyzing distance data, in particular for decomposing a metric D into a sum of simpler metrics as well as for representing it by certain specific edge-weighted graphs, often referred to as realizations of D. Many of these approaches involve the explicit or implicit computation of the so-called cutpoints of (the tight span of) D, such as the algorithm for computing the “building blocks” of optimal realizations of D recently presented by A. Hertz and S. Varone. The main result of this paper is an algorithm for computing the set of these cutpoints for a metric D on a finite set with n elements in O(n3) time. As a direct consequence, this improves the run time of the aforementioned O(n6)-algorithm by Hertz and Varone by “three orders of magnitude”.


Metric Cutpoint Realization Tight span Decomposition Block 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BANDELT, H. J., and DRESS, A. (1992), “A Canonical Decomposition Theory for Metrics on a Finite Set”, Advances in Mathematics, 92, 47–105.CrossRefMathSciNetzbMATHGoogle Scholar
  2. BRYANT, D., and BERRY, V. (2001), “A Structured Family of Clustering and Tree Construction Methods”, Advances in Applied Mathematics, 27, 705–732.CrossRefMathSciNetzbMATHGoogle Scholar
  3. CHUNG, F., GARRETT,M., GRAHAM, R., and SHALLCROSS, D. (2001), “Distance Realization Problems with Applications to Internet Tomography”, Journal of Computer and System Sciences, 63, 432–448.CrossRefMathSciNetzbMATHGoogle Scholar
  4. CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., and STEIN, C. (2001), Introduction to Algorithms, Cambridge, MA: MIT Press.zbMATHGoogle Scholar
  5. DEZA, M., and LAURENT, M. (1997), Geometry of Cuts and Metrics, Berlin: Springer.zbMATHGoogle Scholar
  6. DRESS, A. (1984), “Trees, Tight Extensions of Metric Spaces, and the Cohomological Dimension of Certain Groups: A Note on Combinatorial Properties of Metric Spaces”, Advances in Mathematics, 53, 321–402.CrossRefMathSciNetzbMATHGoogle Scholar
  7. DRESS, A., HUBER, K. T., KOOLEN, J., and MOULTON, V. (2007), “An Algorithm for Computing Virtual Cut Points in Finite Metric Spaces”, in International Conference on Combinatorial Optimization and Applications (COCOA), volume 4616 of LNCS, eds. A.W.M. Dress, Y. Xu, B, Zhu, Springer, pp. 4–10.Google Scholar
  8. DRESS, A., HUBER, K. T., KOOLEN, J., and MOULTON, V. (2008a), “Block Realizations of Finite Metrics and the Tight-span Construction I: The Embedding Theorem”, Applied Mathematics Letters, 21, 1306–1309.CrossRefMathSciNetzbMATHGoogle Scholar
  9. DRESS, A., HUBER, K. T., KOOLEN, J., and MOULTON, V. (2008b), “Compatible Decompositions and Block Realizations of Finite Metrics”, European Journal of Combinatorics, 29, 1617–1633.CrossRefMathSciNetzbMATHGoogle Scholar
  10. DRESS, A., HUBER, K. T., KOOLEN, J., and MOULTON, V. (2008c), “Cut Points in Metric Spaces”, Applied Mathematics Letters, 21, 545–548.CrossRefMathSciNetzbMATHGoogle Scholar
  11. GONZALEZ, T. (2000), “Simple Algorithms for the On-line Multidimensional Dictionary and Related Problems”, Algorithmica, 28, 255–267.CrossRefMathSciNetzbMATHGoogle Scholar
  12. HARARY, F., and PRINS, G. (1966), “The Block-cutpoint-tree of a Graph”, Publicationes Mathematicae Debrecen, 13, 103–107.MathSciNetzbMATHGoogle Scholar
  13. HERTZ, A., and VARONE, S. (2007), “The Metric Bridge Partition Problem”, Journal of Classification, 24, 235–249.CrossRefMathSciNetzbMATHGoogle Scholar
  14. HERTZ, A., and VARONE, S. (2008), “The Metric Cutpoint Partition Problem”, Journal of Classification, 25, 159–175.CrossRefMathSciNetzbMATHGoogle Scholar
  15. HUSON, D., and BRYANT, D. (2005), “Application of Phylogenetic Networks in Evolutionary Studies”, Molecular Biology and Evolution, 23, 254–267.CrossRefGoogle Scholar
  16. IMRICH, W., SIMOES-PEREIRA, J., and ZAMFIRESCU, C. (1984), “On Optimal Embeddings of Metrics in Graphs”, Journal of Combinatorial Theory, Series B, 36, 1–15.CrossRefMathSciNetzbMATHGoogle Scholar
  17. ISBELL, J. (1964), “Six Theorems About Metric Spaces”, Commentarii Mathematici Helvetici, 39, 65–74.CrossRefMathSciNetzbMATHGoogle Scholar
  18. KURATOWSKI, C. (1935), “Quelques problèmes concernant les espaces métriques nons éperables”, Fundamenta Mathematicae, 25, 534–545.Google Scholar
  19. SEMPLE, C., and STEEL, M. (2003), Phylogenetics, Oxford: Oxford University Press.zbMATHGoogle Scholar
  20. WEST, D. (1996), Introduction to Graph Theory, Prentice Hall.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Andreas Dress
    • 1
  • Katharina T. Huber
    • 2
  • Jacobus Koolen
    • 3
  • Vincent Moulton
    • 2
  • Andreas Spillner
    • 4
  1. 1.CAS-MPG Partner Institute and Key Lab for Computational Biology (PICB)ShanghaiChina
  2. 2.University of East AngliaEast AngliaUK
  3. 3.Pohang Mathematics Institute and POSTECHPohang-siSouth Korea
  4. 4.University of GreifswaldDeutschlandGermany

Personalised recommendations