Advertisement

Journal of Classification

, Volume 27, Issue 2, pp 173–190 | Cite as

n-Way Metrics

  • Matthijs J. Warrens
Article

Abstract

We study a family of n-way metrics that generalize the usual two-way metric. The n-way metrics are totally symmetric maps from E n into \( {\mathbb{R}_{ \geqslant 0}} \). The three-way metrics introduced by Joly and Le Calvé (1995) and Heiser and Bennani (1997) and the n-way metrics studied in Deza and Rosenberg (2000) belong to this family. It is shown how the n-way metrics and n-way distance measures are related to (n − 1)-way metrics, respectively, (n − 1)-way distance measures.

Keywords

n-Way distance measure Triangle inequality Tetrahedron inequality;Polyhedron inequality Parametrized inequality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BENNANI-DOSSE, M. (1993), Analyses Métriques á Trois Voies, PhD Dissertation, Université de Haute Bretagne Rennes II, France.Google Scholar
  2. CHEPOI, V., and FICHET, B. (2007), “A Note on Three-way Dissimilarities and Their Relationship With Two-way Dissimilarities,” in Selected Contributions in Data Analysis and Classification, eds. P. Brito, P. Bertrand, G. Cucumel, and F. De Carvalho, Berlin: Springer, pp. 465–476.CrossRefGoogle Scholar
  3. COX, T.F., COX, M.A.A. and BRANCO, J.A. (1991), “Multidimensional Scaling of n-Tuples,” British Journal of Mathematical and Statistical Psychology, 44, 195–206.zbMATHGoogle Scholar
  4. DE ROOIJ, M. (2001), Distance Models for Transition Frequency Data, PhD Dissertation, Leiden University, The Netherlands.Google Scholar
  5. DE ROOIJ, M., and GOWER, J. C. (2003), “The Geometry of Triadic Distances,” Journal of Classification, 20, 181–220.zbMATHCrossRefMathSciNetGoogle Scholar
  6. DEZA, E., and DEZA, M.-M. (2006), Dictionary of Distances, Amsterdam: Elsevier.Google Scholar
  7. DEZA, M.-M., and ROSENBERG, I.G. (2000), “n-Semimetrics.” European Journal of Combinatorics, 21, 797–806.zbMATHCrossRefMathSciNetGoogle Scholar
  8. DEZA, M.-M., and ROSENBERG, I.G. (2005), “Small Cones of m-Hemimetrics,” Discrete Mathematics, 291, 81–97.zbMATHCrossRefMathSciNetGoogle Scholar
  9. DIATTA, J. (2006), “Description-meet Compatible Multiway Dissimilarities,” Discrete Applied Mathematics, 154, 493–507.zbMATHCrossRefMathSciNetGoogle Scholar
  10. DIATTA, J. (2007), “Galois Closed Entity Sets and k-Balls of Quasi-ultrametric Multi-way Dissimilarities,” Advances in Data Analysis and Classification, 1, 53–65.zbMATHCrossRefMathSciNetGoogle Scholar
  11. GOWER, J.C., and DE ROOIJ, M. (2003), “A Comparison of the Multidimensional Scaling of Triadic and Dyadic Distances,” Journal of Classification, 20, 115–136.zbMATHCrossRefMathSciNetGoogle Scholar
  12. GOWER, J.C., and LEGENDRE, P. (1986), “Metric and Euclidean Properties of Dissimilarity Coefficients,” Journal of Classification, 3, 5–48.zbMATHCrossRefMathSciNetGoogle Scholar
  13. HEISER, W. J., and BENNANI, M. (1997), “Triadic Distance Models: Axiomatization and Least Squares Representation,” Journal of Mathematical Psychology, 41, 189–206.zbMATHCrossRefMathSciNetGoogle Scholar
  14. JACCARD, P. (1912), “The Distribution of the Flora in the Alpine Zone,” The New Phytologist, 11, 37–50.CrossRefGoogle Scholar
  15. JOLY, S., and LE CALVÉ, G. (1995), “Three-way Distances,” Journal of Classification, 12, 191–205.zbMATHCrossRefMathSciNetGoogle Scholar
  16. NAKAYAMA, A. (2005), “A Multidimensional Scaling Model for Three-way Data Analysis,” Behaviormetrika, 32, 95–110.zbMATHCrossRefMathSciNetGoogle Scholar
  17. RUSSEL, P.F., and RAO, T.R. (1940), “On Habitat and Association of Species of Anopheline Larvae in South-Eastern Madras,” Journal of Malaria Institute India, 3, 153–178.Google Scholar
  18. SOKAL, R.R., and MICHENER, C.D. (1958), “A Statistical Method for Evaluating Systematic Relationships”, University of Kansas Science Bulletin, 38, 1409–1438.Google Scholar
  19. WARRENS, M.J. (2008a), “On Multi-way Metricity, Minimality and Diagonal Planes,” Advances in Data Analysis and Classification, 2, 109–119.CrossRefMathSciNetGoogle Scholar
  20. WARRENS, M.J. (2008b), “On the Indeterminacy of Resemblance Measures for (Presence/Absence) Data,” Journal of Classification, 25, 125-1-36.zbMATHCrossRefMathSciNetGoogle Scholar
  21. WARRENS, M.J. (2008c), “Bounds of Resemblance Measures for Binary (Presence/Absence) Variables,” Journal of Classification, 25, 195–208.zbMATHCrossRefMathSciNetGoogle Scholar
  22. WARRENS, M.J. (2008d), “On Association Coefficients for 2 × 2 Tables and Properties That Do not Depend on the Marginal Distributions,” Psychometrika, 73, 777-7-89.zbMATHCrossRefMathSciNetGoogle Scholar
  23. WARRENS, M.J. (2008e), “On Similarity Coefficients for 2 × 2 Tables and Correction for Chance,” Psychometrika, 73, 487–502.CrossRefMathSciNetGoogle Scholar
  24. WARRENS, M.J. (2009a), “k-Adic Similarity Coefficients for Binary (Presence/Absence) Data,” Journal of Classification, 26, 227–245.CrossRefGoogle Scholar
  25. WARRENS, M.J. (2009b), “On Robinsonian Dissimilarities, the Consecutive Ones Property and Latent Variable Models,” Advances in Data Analysis and Classification, 3, 169–184.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Psychology, Unit Methodology and StatisticsLeiden UniversityLeidenThe Netherlands

Personalised recommendations