Advertisement

Journal of Classification

, Volume 26, Issue 3, pp 329–360 | Cite as

Unfolding Incomplete Data: Guidelines for Unfolding Row-Conditional Rank Order Data with Random Missings

  • Frank M. T. A. Busing
  • Mark de Rooij
Article

Abstract

Unfolding creates configurations from preference information. In this paper, it is argued that not all preference information needs to be collected and that good solutions are still obtained, even when more than half of the data is missing. Simulation studies are conducted to compare missing data treatments, sources of missing data, and designs for the specification of missing data. Guidelines are provided and used in actual practice.

Keywords

Unfolding Incomplete data Missing data BIBD PREFSCAL 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ARNOLD, G.M., andWILLIAMS, A.A. (1986), “The Use of Generalized Procrustes Analysis in Sensory Analysis”, in Statistical Procedures in Food Research, ed. R. Piggott, London: Elsevier, pp. 233–253.Google Scholar
  2. BALABANIS,G., and DIAMANTOPOULOS,A. (2004),“Domestic Country Bias, Countryof- Origin Effects, and Consumer Ethnocentrism: A Multidimensional Unfolding Approach”, Journal of the Academy of Marketing Science, 32(1), 80–95.CrossRefGoogle Scholar
  3. BENNETT, J., and HAYES, W.L. (1960), “Multidimensional Unfolding: Determining the Dimensionality of Ranked Preference Data”, Psychometrika, 25, 27–43.CrossRefMathSciNetGoogle Scholar
  4. BORG, I., and GROENEN, P.F. (2005), Modern Multidimensional Scaling: Theory and Applications (2nd ed.), New York: Springer-Verlag.zbMATHGoogle Scholar
  5. BURT, C. (1948),“The Factorial Study of Temperamental Traits”, British Journal of Psychology (Statistical Section), 1, 178–203.Google Scholar
  6. BUSING, F.M.T.A. (2006), “Avoiding Degeneracy In Metric Unfolding By Penalizing the Intercept”, British Journal of Mathematical and Statistical Psychology, 59, 419–427.CrossRefMathSciNetGoogle Scholar
  7. BUSING, F.M.T.A., GROENEN, P.J.F., and HEISER, W.J. (2005), “Avoiding Degeneracy in Multidimensional Unfolding by Penalizing on the Coefficient of Variation”, Psychometrika, 70(1), 71–98.CrossRefMathSciNetGoogle Scholar
  8. CARROLL, J.D. (1972), “Individual Differences and Multidimensional Scaling”, in Multidimensional Scaling: Theory and Applications in the Behavioral Sciences (Vol. 1), eds. R.N. Shepard, A.K. Romney, and S. B. Nerlove, New York: Seminar Press, pgs. 105–155.Google Scholar
  9. CHATTERJEE, R. and DESARBO, W.S. (1992), “Accommodating the Effects of Brand Unfamiliarity in the Multidimensional Scaling of Preference Data”,Marketing Letters, 3(1), 85–99.CrossRefGoogle Scholar
  10. CLATWORTHY, W.H. (1973), “Tables of Two-Associate-Class Partially Balanced Designs”, Applied Mathematics Series 63.Google Scholar
  11. CLIFF, N. (1966), “Orthogonal Rotation to Congruence”, Psychometrika, 31, 33–42.CrossRefMathSciNetGoogle Scholar
  12. COCHRAN, W.G., and COX, G.M. (1957), Experimental Designs (2nd ed.), New York: Wiley.zbMATHGoogle Scholar
  13. COHEN, J. (1988), Statistical Power Analysis for the Behavioral Sciences (2nd ed.), New York: Academic Press.zbMATHGoogle Scholar
  14. COMMANDEUR, J.J.F., and HEISER,W.J. (1993), “Mathematical Derivations in the Proximity Scaling (PROXSCAL) of Symmetric Data Matrices”, Technical Report RR-93-04, Leiden, The Netherlands: Leiden University, Department of Data Theory.Google Scholar
  15. COOMBS, C.H. (1950), “Psychological Scaling Without a Unit of Measurement”, Psychological Review, 57, 148–158.CrossRefGoogle Scholar
  16. CURETON, E.E., and D’AGOSTINO, R.B. (1983), Factor Analysis: An Applied Approach, Hillsdale, NJ: Lawrence Erlbaum.zbMATHGoogle Scholar
  17. DE LEEUW, J., and HEISER,W.J. (1977), “Convergence of Correction-matrix Algorithms for Multidimensional Scaling”, in Geometric Representations of Relational Data, eds. J.C. Lingoes, E.E.C.I. Roskam, and I. Borg, Ann Arbor, MI: Mathesis Press, pp. 735–752. Google Scholar
  18. DESARBO, W.S., and CARROLL, J.D. (1985), “Three-Way Metric Unfolding via Alternating Weighted Least Squares”, Psychometrika, 50 3), 275–300. zbMATHCrossRefGoogle Scholar
  19. DESARBO, W.S., KIM, J., CHOI, S.C., and SPAULDING, M. (2002), “A Gravity-Based Multidimensional Scaling Model for Deriving Spatial Structures Underlying Consumer Preference/Choice Judgments”, Journal of Consumer Research, 29, 91–100.CrossRefGoogle Scholar
  20. DESARBO, W.S., and RAO, V.R. (1984), “GENFOLD2: A Set of Models and Algorithms for the GENeral unFOLDing Analysis Of Preference/Dominance Data”, Journal of Classification, 1, 147–186.zbMATHCrossRefGoogle Scholar
  21. DESARBO, W.S., YOUNG, M.R., and RANGASWAMY, A. (1997), “A Parametric Multidimensional Unfolding Procedure for Incomplete Nonmetric Preference/Choice Set Data in Marketing Research”, Journal of Marketing Research, 34(4), 499–516.CrossRefGoogle Scholar
  22. DIJKSTERHUIS, G.B., GOWER, J.C. (1991), “The Interpretation of Generalized Procrustes Analysis and Allied Methods”, Food, Quality and Preference, 3, 67–87.CrossRefGoogle Scholar
  23. GREEN, P.E., RAO, V. (1972), Applied Multidimensional Scaling, Hinsdale, IL: Dryden Press.Google Scholar
  24. HEISER, W.J., and DE LEEUW, J. (1979), How to use SMACOF-III: A Program for Metric Multidimensional Unfolding, Leiden, The Netherlands: Leiden University, Department of Data Theory.Google Scholar
  25. HEISER, W.J., and GROENEN, P.J.F. (1997), “Cluster Differences Scaling with a Withinclusters Loss Component and a Fuzzy Successive Approximation Strategy to Avoid Local Minima”, Psychometrika, 62, 63–83.zbMATHCrossRefMathSciNetGoogle Scholar
  26. KELLY, G A. (1955), The Psychology of Personal Constructs: Theory of Personality, New York: Norton.Google Scholar
  27. KENDALL, M.G. (1948), Rank Correlation Methods, London: Charles Griffin and Company Limited.zbMATHGoogle Scholar
  28. KIM, C., RANGASWAMY, A., and DESARBO,W.S.(1999), “A Quasi-metric Approach to Multidimensional Unfolding for Reducing the Occurrence of Degenerate Solutions”, Multivariate Behavioral Research, 34, 143–180.CrossRefGoogle Scholar
  29. KRUSKAL, J.B. (1964), “Multidimensional Scaling by Optimizing Goodness-of-fit to a Nonmetric Hypothesis”, Psychometrika, 29, 1–27.zbMATHCrossRefMathSciNetGoogle Scholar
  30. KRUSKAL, J.B., and CARROLL, J.D. (1969), “Geometrical Models and Badness-of-fit Functions, in Multivariate Analysis, ed. P. R. Krishnaiah, New York: Academic Press, pp. 639–671. Google Scholar
  31. LINGOES, J.C. (1977), “A General Nonparametric Model for Representing Objects and Attributes in a Joint Metric Space”, in Geometric Representations of Relational Data, ed. J. C. Lingoes, Ann Arbor, Michigan: Mathesis Press, pp. 475–496.Google Scholar
  32. LITTLE, R.J.A., and Rubin, D.B. (1987), Statistical Analysis withMissing Data, NewYork: J. Wiley & Sons.Google Scholar
  33. MEULMAN, J.J., and HEISER, W.J. (1983), The Display of Bootstrap Solutions in Multidimensional Scaling, Technical Report, Leiden, The Netherlands: Leiden University, Department of Data Theory.Google Scholar
  34. MEULMAN, J.J., HEISER, W.J., and SPSS Inc. (1999), SPSS Categories 10.0, Chicago, IL, USA: SPSS Inc.Google Scholar
  35. MULAIK, S.A. (1972), The Foundations of Factor Analysis, New York: McGraw-Hill.Google Scholar
  36. NGUYEN, N. (1993), “An Algorithm for Constructing Optimal Resolvable Incomplete Block Designs”, Communications in Statistics, Simulation & Computation, 22, 911–923.zbMATHCrossRefGoogle Scholar
  37. NGUYEN, N. (1994), “Construction of Optimal Block Design by Computer”, Technometrics, 36, 300–307.zbMATHCrossRefMathSciNetGoogle Scholar
  38. PEARSON, K. (1896), “ Regression, Heredity, and Panmixia”, Philosophical Transactions of the Royal Society of London, Series A, 187, 253–318.CrossRefGoogle Scholar
  39. PRESTWICH, S.D. (2001), “Balanced Incomplete Block Design as Satisfiability”, in Proceedings of the 12th Irish Conference on AI and Cognitive Science (AICS 2001), ed. D. O’Donoghue, NUI Maynooth, Ireland.Google Scholar
  40. ROSKAM, E.E. CH I. (1968), Metric Analysis of Ordinal Data, Voorschoten: VAM.Google Scholar
  41. ROWE, G., LAMBERT, N., BOWLING, A., EBRAHIM, S., WAKELING, I., and THOMSON, R. (2005), “Assessing Patients Preferences for Treatments for Angina Using a Modified Repertory Grid Method”, Social Science & Medicine, 2585–2595.Google Scholar
  42. SHEPARD, R.N. (1962), “The Analysis of Proximities: Multidimensional Scaling with an nknown distance fun ction. I.”, Psychometrika, 27, 125–140.CrossRefMathSciNetGoogle Scholar
  43. SHOCKER, A.D., BEN-AKIVA,M., BOCCARA, B., and NEDUNGADI, P. (1991), “Consideration Set Influences on Consumer Decision-Making and Choice: Issues, Models, and Suggestions”, Marketing Letters, 2:3, 181–197.Google Scholar
  44. SPSS (2006), SPSS for Windows, Release 15.0, [Computer Software].Google Scholar
  45. TUCKER, L. R. (1951), A Method for Synthesis of Factor Analytic ”S” Studies, Washington, D.C.: Department of the Army.Google Scholar
  46. VAN DEUN, K. (2005), Degeneracies in Multidimensional Unfolding, Unpublished doctoral dissertation, Catholik University Leuven.Google Scholar
  47. VAN DEUN, K., GROENEN, P.J.F., and DELBEKE, L. (2005), “ VIPSCAL: A Combined Vector Ideal PointModel for Preference Data”, Econometric Institute Report EI 2005-03, Rotterdam: Erasmus University Rotterdam.Google Scholar
  48. VAN DEUN, K., HEISER, W.J., and DELBEKE, L. (2007), “Multidimensional Unfolding by Nonmetric Multidimensional Scaling of Spearman distances in the Extended Permutation Polytope”, Multivariate Behavioral Research, 42(1), 103–132.Google Scholar
  49. WAGENAAR, W.A., and PADMOS, P. (1971), “Quantitative Interpretation of Stress in Kruskal’s Method Multidimensional Scaling Technique”, British Journal of Mathematical and Statistical Psychology, 24, 101–110.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PsychologyLeiden UniversityLeidenthe Netherlands

Personalised recommendations