Advertisement

Social Choice and Welfare

, Volume 52, Issue 4, pp 607–634 | Cite as

Bounds for the Nakamura number

  • Josep Freixas
  • Sascha KurzEmail author
Original Paper

Abstract

The Nakamura number is an appropriate invariant of a simple game to study the existence of social equilibria and the possibility of cycles. For symmetric (quota) games its number can be obtained by an easy formula. For some subclasses of simple games the corresponding Nakamura number has also been characterized. However, in general, not much is known about lower and upper bounds depending on invariants of simple, complete or weighted games. Here, we survey such results and highlight connections with other game theoretic concepts.

Keywords

Nakamura number Stability Simple games Complete simple games Weighted games Bounds 

Mathematics Subject Classification

91A12 91B14 91B12 

Notes

Acknowledgements

The authors thank the anonymous referees and the associate editor for their careful reading of a preliminary version of this paper. Their constructive remarks were extremely useful to improve its presentation.

References

  1. Bachrach Y, Elkind E, Meir R, Pasechnik D, Zuckerman M, Rothe J, Rosenschein J (2009) The cost of stability in coalitional games. In: Proceedings of the 2nd international symposium on algorithmic game theory, SAGT ’09, pp 122–134. Springer, BerlinGoogle Scholar
  2. Bartholdi JJ, Narasimhan LS, Tovey CA (1991) Recognizing majority-rule equilibrium in spatial voting games. Soc Choice Welf 8(3):183–197CrossRefGoogle Scholar
  3. Baum S, Trotter L Jr (1981) Integer rounding for polymatroid and branching optimization problems. SIAM J Algebraic Discret Methods 2(4):416–425CrossRefGoogle Scholar
  4. Beck M, Robins S (2007) Computing the continuous discretely. Springer, BerlinGoogle Scholar
  5. Carreras F, Freixas J (1996) Complete simple games. Math Soc Sci 32:139–155CrossRefGoogle Scholar
  6. Deb R, Weber S, Winter E (1996) The Nakamura theorem for coalition structures of quota games. Int J Game Theory 25(2):189–198CrossRefGoogle Scholar
  7. Deǐneko VG, Woeginger GJ (2006) On the dimension of simple monotonic games. Eur J Oper Res 170(1):315–318CrossRefGoogle Scholar
  8. Eisenbrand F, Pálvölgyi D, Rothvoß T (2013) Bin packing via discrepancy of permutations. ACM Tran Algorithms 9(3):24Google Scholar
  9. Ferejohn J, Grether D (1974) On a class of rational social decision procedures. J Econ Theory 8(4):471–482CrossRefGoogle Scholar
  10. Freixas J, Kurz S (2014a) On \(\alpha \)-roughly weighted games. Int J Game Theory 43(3):659–692CrossRefGoogle Scholar
  11. Freixas J, Kurz S (2014b) On minimum integer representations of weighted games. Math Soc Sci 67:9–22CrossRefGoogle Scholar
  12. Freixas J, Marciniak D (2009) A minimum dimensional class of simple games. Top 17(2):407–414CrossRefGoogle Scholar
  13. Freixas J, Zwicker WS (2003) Weighted voting, abstention, and multiple levels of approval. Soc Choice Welf 21(3):399–431CrossRefGoogle Scholar
  14. Gilmore P, Gomory R (1961) A linear programming approach to the cutting-stock problem. Oper Res 9(6):849–859CrossRefGoogle Scholar
  15. Greenberg J (1979) Consistent majority rule over compact sets of alternatives. Econometrica 47(3):627–636CrossRefGoogle Scholar
  16. Hof F, Kern W, Kurz S, Paulusma D (2018) In: Deng X (ed) International symposium on algorithmic game theory, SAGT 2018, vol 11059. Lecture notes in computer science, pp 69–81Google Scholar
  17. Holzman R (1986) The capacity of a committee. Math Soc Sci 12(2):139–157CrossRefGoogle Scholar
  18. Kartak V, Kurz S, Ripatti A, Scheithauer G (2015) Minimal proper non-IRUP instances of the one-dimensional cutting stock problem. Discret Appl Math 187:120–129CrossRefGoogle Scholar
  19. Keiding H (1984) Heights of simple games. Int J Game Theory 13(1):15–26CrossRefGoogle Scholar
  20. Kumabe M, Mihara H (2008) The Nakamura number for computeable simple games. Soc Choice Welf 31(4):621–640CrossRefGoogle Scholar
  21. Kurz S (2012) On minimum sum representations for weighted voting games. Ann Oper Res 196(1):361–369CrossRefGoogle Scholar
  22. Kurz S, Napel S (2016) Dimension of the Lisbon voting rules in the EU Council: a challenge and new world record. Optim Lett 10(6):1245–1256CrossRefGoogle Scholar
  23. Kurz S, Nohn A, Napel S (2014) The nucleolus of large majority games. Econ Lett 123(2):139–143CrossRefGoogle Scholar
  24. Le Breton M, Salles M (1990) The stability set of voting games: classification and genericity results. Int J Game Theory 19(2):111–127CrossRefGoogle Scholar
  25. Martin M (1998) Quota games and stability set of order d. Econ Lett 59(2):145–151CrossRefGoogle Scholar
  26. Nakamura K (1979) The vetoers in a simple game with ordinal preferences. Int J Game Theory 8(1):55–61CrossRefGoogle Scholar
  27. Peleg B (1978) Consistent voting systems. Econometrica 46(1):153–161CrossRefGoogle Scholar
  28. Peleg B (1987) Cores and capacities of compound simple games. Soc Choice Welf 4(4):307–316CrossRefGoogle Scholar
  29. Peleg B (2008) Game theoretic analysis of voting in committees. Books, CambridgeGoogle Scholar
  30. Saari D (2014) Unifying voting theory from Nakamura’s to Greenberg’s theorems. Math Soc Sci 69:1–11CrossRefGoogle Scholar
  31. Scheithauer G, Terno J (1995) The modified integer round-up property of the one-dimensional cutting stock problem. Eur J Oper Res 84(3):562–571CrossRefGoogle Scholar
  32. Schofield N (1984) Social equilibrium and cycles on compact sets. J Econ Theory 33(1):59–71CrossRefGoogle Scholar
  33. Schwartz T (2001) From arrow to cycles, instability, and chaos by untying alternatives. Soc Choice Welf 18(1):1–22CrossRefGoogle Scholar
  34. Takamiya K, Tanaka A (2016) Computational complexity in the design of voting. Theory Decis 80:33–41CrossRefGoogle Scholar
  35. Tchantcho B, Lambo L, Pongou R, Moulen J (2010) On the equilibrium of voting games with abstention and several levels of approval. Soc Choice Welf 34(3):379–396CrossRefGoogle Scholar
  36. Truchon M (1996) Acyclicity and decisiveness structures. J Econ Theory 69(2):447–469CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Engineering, School of ManresaUniversitat Politècnica de CatalunyaCataloniaSpain
  2. 2.Department of Mathematics, Physics, and Computer ScienceUniversity of BayreuthBayreuthGermany

Personalised recommendations