Advertisement

Social Choice and Welfare

, Volume 39, Issue 1, pp 141–170 | Cite as

A continuous rating method for preferential voting: the complete case

  • Rosa Camps
  • Xavier Mora
  • Laia Saumell
Original Paper

Abstract

A method is given for quantitatively rating the social acceptance of different options which are the matter of a complete preferential vote. Completeness means that every voter expresses a comparison (a preference or a tie) about each pair of options. The proposed method is proved to have certain desirable properties, which include: the continuity of the rates with respect to the data, a decomposition property that characterizes certain situations opposite to a tie, the Condorcet–Smith principle, and clone consistency. One can view this rating method as a complement for the ranking method introduced in 1997 by Markus Schulze. It is also related to certain methods of cluster analysis and one-dimensional scaling.

Keywords

Total Order Transitive Closure Complete Case Continuous Rating Individual Vote 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balinski M, Laraki R (2007) A theory of measuring, electing, and ranking. Proc Natl Acad Sci USA 104: 8720–8725CrossRefGoogle Scholar
  2. Balinski M, Laraki R (2011) Majority judgment: measuring, electing and ranking. MIT Press, CambridgeGoogle Scholar
  3. Buer H, Möhring RH (1983) A fast algorithm for the decomposition of graphs and posets. Math Oper Res 8:170–184CrossRefGoogle Scholar
  4. Cormen TH, Leiserson CL, Rivest RL, Stein C (2001) Introduction to algorithms, 2nd ed. MIT Press, CambridgeGoogle Scholar
  5. Feldman-Högaasen J (1969) Ordres partiels et permutoèdre. Math Sci Hum 28: 27–38Google Scholar
  6. Hubert LJ, Arabie P, Meulman J (2001) Combinatorial data analysis: optimization by dynamic programming. SIAM, PhiladelphiaGoogle Scholar
  7. Jacquet-Lagrèze E (1971) Analyse d’opinions valuées et graphes de préférence. Math Sci Hum 33:33–55Google Scholar
  8. Jardine N, Sibson R (1971) Mathematical taxonomy. Wiley, New YorkGoogle Scholar
  9. McLean, I, Urken, AB (eds) (1995) Classics of social choice. The University of Michigan Press, Ann ArborGoogle Scholar
  10. Monjardet B (1990) Sur diverses formes de la “règle de Condorcet” d’agrégation des préférences. Math Sci Hum 111: 61–71Google Scholar
  11. Mora X (2008) CLC calculator. http://mat.uab.cat/xmora/CLC_calculator/
  12. Munkres JR (1975) Topology. Prentice-Hall, Englewood CliffsGoogle Scholar
  13. Schulze M (2003) A new monotonic and clone-independent single-winner election method. Voting Matters 17: 9–19Google Scholar
  14. Schulze M (2011) A new montonic, clone-independent, reversal symmetric, and Condorcet-consistent single-winner election method. Soc Choice Welf 36: 267–303CrossRefGoogle Scholar
  15. Smith JH (1973) Aggregation of preferences with variable electorate. Econometrica 41: 1027–1041CrossRefGoogle Scholar
  16. Szpilrajn E (1930) Sur l’extension de l’ordre partiel. Fundam Math 16: 386–389Google Scholar
  17. Tideman TN (1987) Independence of clones as a criterion for voting rules. Soc Choice Welf 4: 185–206CrossRefGoogle Scholar
  18. Tideman TN (2006) Collective decisions and voting: the potential for public choice. Ashgate, FarnhamGoogle Scholar
  19. Zavist TM, Tideman TN (1989) Complete independence of clones in the ranked pairs rule. Soc Choice Welf 6: 167–173CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Departament de MatemàtiquesUniversitat Autònoma de BarcelonaCataloniaSpain

Personalised recommendations