Advertisement

Whole-Cell Modeling and Simulation: A Brief Survey

  • Nayana G. BhatEmail author
  • S. Balaji
Article

Abstract

Gaining knowledge and engineering of biological systems require comprehensive models of cellular physiology with 100% predictability. The whole-cell models direct experiments in molecular biological science and empower simulation and computer-aided design in synthetic biology. Whole-cell modeling and simulation help in personalized medical treatment building a biological system through cell interactions. In addition, the whole-cell model can address specific issues such as transcription, regulation, pathways for protein expression and many more. Constructing comprehensive whole-cell models with enough detail and validating them is a massive work. Though considering available parameters and pathways, modeling and simulation of a cell are partially successful, still, there exist a lot of more challenges that need to be tackled. Notwithstanding the immense challenges, whole-cell models are quickly getting to be viable. This paper briefly reviews the cutting edge of existing methods and techniques with their present status and the reason for improvements required in various stages of whole-cell modeling such as (1) collection of data, (2) designing tools and model building, (3) acceleration of simulation speed and (4) visualizing and analyzing.

Keywords

Whole-cell modeling Synthetic biology Personalized medicine Modeling and simulation GPU computing Accelerated simulation 

Notes

References

  1. 1.
    Karr, J.R., et al.: The principles of whole-cell modeling. Curr. Opin. Microbiol. 27, 18–24 (2015).  https://doi.org/10.1016/j.mib.2015.06.004 Google Scholar
  2. 2.
    Dror, R.O., et al.: Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys. 41, 429–452 (2012)Google Scholar
  3. 3.
    Karr, J.R., et al.: A whole-cell computational model predicts phenotype from genotype. Cell 150, 389–401 (2012)Google Scholar
  4. 4.
    Kazakiewicz, D., et al.: A combined systems and structural modeling approach repositions antibiotics for Mycoplasma genitalium. Comput. Biol. Chem. (2015).  https://doi.org/10.1016/j.compbiolchem.2015.07.007 Google Scholar
  5. 5.
    Fraser, C.M.: The minimal gene complement of Mycoplasma genitalium. Science 270(5235), 397–403 (1995).  https://doi.org/10.1126/science.270.5235.397 Google Scholar
  6. 6.
    Cokelaer, T., et al.: BioServices: a common Python package to access biological web services programmatically. Bioinformatics 29(24), 3241–3242 (2013)Google Scholar
  7. 7.
    Kanehisa, M., et al.: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30 (2000)Google Scholar
  8. 8.
    de Matos, P., et al.: ChEBI: a chemistry ontology and database. J. Cheminform. 2, P6 (2010)Google Scholar
  9. 9.
    Chelliah, V., Juty, N.: BioModels: ten-year anniversary. Nucleic Acids Res. (2015).  https://doi.org/10.1093/nar/gku1181 Google Scholar
  10. 10.
    Goldberg, A.P., et al.: A blueprint for human whole-cell modeling. Curr. Opin. Syst. Biol. 7, 8–15 (2017)Google Scholar
  11. 11.
    Lopez, C.F., Muhlich, J.L., et al.: Programming biological models in Python using PySB. Mol. Syst. Biol. (2013).  https://doi.org/10.1038/msb.2013.1 Google Scholar
  12. 12.
    Karr, J.R., et al.: WholeCellKB: model organism databases for comprehensive whole-cell models. Nucleic Acids Res. (2012).  https://doi.org/10.1093/nar/gks1108 Google Scholar
  13. 13.
    Purcell, O., et al.: Towards a whole-cell modeling approach for synthetic biology. Chaos 23(2), 025112 (2013)Google Scholar
  14. 14.
    Tomita, M.: Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol. 19(6), 205–210 (2001)Google Scholar
  15. 15.
    Hoops, S., Sahle, S.: Computational modeling of biochemical networks using COPASI. Methods Mol. Biol. (2009).  https://doi.org/10.1007/978-1-59745-525-1_2 Google Scholar
  16. 16.
    Moraru, I.I., Schaff, J.C.: Virtual Cell modelling and simulation software environment. IET Syst. Biol. (2008).  https://doi.org/10.1049/iet-syb:20080102 Google Scholar
  17. 17.
    Schaff, J.C., Slepchenko, B.M.: Analysis of nonlinear dynamics on arbitrary geometries with the virtual cell. Chaos 11(1), 115–134 (2001)zbMATHGoogle Scholar
  18. 18.
    Orth, J.D., Thiele, I., Palsson, B.O.: What is flux balance analysis? Nat. Biotechnol. 28, 245–248 (2010).  https://doi.org/10.1038/nbt.1614 Google Scholar
  19. 19.
    Roberts, E., Magis, A.: Noise contributions in an inducible genetic switch: a whole-cell simulation study. PLoS Comput. Biol. 7(3), e1002010 (2011)Google Scholar
  20. 20.
    Memeti, S., Li, L.: Benchmarking OpenCL, OpenACC, OpenMP, and CUDA: programming productivity, performance, and energy consumption. In: ARMS-CC. ISBN: 978-1-4503-5116-4/17/07.  https://doi.org/10.1145/3110355.3110356 (2017)
  21. 21.
    Carrera, J., Covert, M.W.: Why build whole-cell models? Trends Cell Biol. 25(12), 719–722 (2015).  https://doi.org/10.1016/j.tcb.2015.09.004 Google Scholar
  22. 22.
    Goldberg, A.P.: Toward scalable whole-cell modeling of human cells. In: SIGSIM-PADS. ACM, ISBN: 978-1-4503-3742-7/16/05.  https://doi.org/10.1145/2901378.2901402 (2016)
  23. 23.
    Sanghvi, J.C., Regot, S., et al.: Accelerated discovery via a whole-cell model. Nat Methods (2013).  https://doi.org/10.1038/nmeth.2724 Google Scholar
  24. 24.
    Karr, J.R., et al.: Toward community standards and software for whole-cell modeling. IEEE Trans. Biomed. Eng. 63(10), 2007–2014 (2016)Google Scholar
  25. 25.
    Babtie, A.C., Stumpf, M.P.H.: How to deal with parameters for whole-cell modelling. J. R. Soc. Interface 14, 20170237 (2017).  https://doi.org/10.1098/rsif.2017.0237 Google Scholar
  26. 26.
    Roberts, E., Stone, J.E., Sepúlveda, L.: Long time-scale simulations of in vivo diffusion using GPU hardware. ISBN: 978-1-4244-3750-4/09/$25.00, IEEE (2009)Google Scholar
  27. 27.
    Hastings, E., et al.: ArrayExpress update—simplifying data submissions. Nucleic Acids Res. (2014).  https://doi.org/10.1093/nar/gku1057 Google Scholar
  28. 28.
    Alonso-López, D., Campos-Laborie, F.J., Gutiérrez, M.A., et al.: APID database: redefining protein–protein interaction experimental evidences and binary interactomes. Database (2019).  https://doi.org/10.1093/database/baz005 Google Scholar
  29. 29.
    Sajed, T., et al.: ECMDB 2.0: a richer resource for understanding the biochemistry of E. coli. Nucleic Acids Res. (2016).  https://doi.org/10.1093/nar/gkv1060 Google Scholar
  30. 30.
    Grethe, G., et al.: International chemical identifier for reactions (RinChI). J. Cheminform. 5, 45 (2013)Google Scholar
  31. 31.
    Caspi, R., Altman, T., et al.: The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. (2012).  https://doi.org/10.1093/nar/gkr1014 Google Scholar
  32. 32.
    Schomburg, I., et al.: The BRENDA enzyme information system–From a database to an expert system. J. Biotechnol. (2017).  https://doi.org/10.1016/j.jbiotec.2017.04.020 Google Scholar
  33. 33.
    Mi, H., Thomas, P.: PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods Mol. Biol. 563, 123–140 (2009)Google Scholar
  34. 34.
    Wang, M., Herrmann, C.J., Simonovic, M., Szklarczyk, D., Mering, C.: Version 4.0 of PaxDb: protein abundance data, integrated across model organisms, tissues, and cell-lines. Proteomics 15, 3163–3168 (2015)Google Scholar
  35. 35.
    Five years of Scientific Data. Sci. Data 6, 72 (2019).  https://doi.org/10.1038/s41597-019-0065-y
  36. 36.
    Shuler, M.L., Leung, S., Dick, C.C.: A mathematical model for the growth of a single cell. Ann. N. Y. Acad. Sci. 326, 35–52 (1979)Google Scholar
  37. 37.
    Drager, A., Palsson, B.Ø.: Improving collaboration by standardization efforts in systems biology. Front. Bioeng. Biotechnol. 2, 61 (2014)Google Scholar
  38. 38.
    Sauro, H.M., Bergmann, F.T.: Standards and ontologies in computational systems biology. Essays Biochem. 45, 211–222 (2008)Google Scholar
  39. 39.
  40. 40.
    Neves, S.R.: Developing models in virtual cell. Sci. Signal. 4(192), tr12 (2011).  https://doi.org/10.1126/scisignal.2001970 Google Scholar
  41. 41.
    Funahashi, A., Matsuoka, Y., et al.: Celldesigner: a modeling tool for biochemical networks. In: Proceedings of the 2006 Winter Simulation Conference (2006).  https://doi.org/10.1109/wsc.2006.322946
  42. 42.
    Garny, A., Nickerson, D.P., Cooper, J., dos Santos, R.W., Miller, A.K., McKeever, S., Nielsen, P.M.F., Hunter, P.J.: CellML and associated tools and techniques. Philos. Trans. A Math. Phys. Eng. Sci. 366(1878), 3017–3043 (2008)Google Scholar
  43. 43.
    Hucka, M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)Google Scholar
  44. 44.
    Glont, M., et al.: BioModels: expanding horizons to include more modelling approaches and formats. Nucleic Acids Res. (2017).  https://doi.org/10.1093/nar/gkx1023 Google Scholar
  45. 45.
    SimTK Team. Simtk. https://simtk.org. Accessed June 2018
  46. 46.
    Gaster, B.R., Howes, L.: Can GPGPU Programming be liberated from the data-parallel bottleneck? Adv. Micro Dev. 45, 42–52 (2012).  https://doi.org/10.1109/MC.2012.257 Google Scholar
  47. 47.
    Macklin, D.N., Ruggero, N.A., Covert, M.W.: The future of whole-cell modeling. Curr. Opin. Biotechnol. 28, 111–115 (2014).  https://doi.org/10.1016/j.copbio.2014.01.012 Google Scholar
  48. 48.
    Zhang, H., Zhang, D.-F., Bi, X.-A.: Comparison and analysis of GPGPU and parallel computing on multi-core CPU. Int. J. Inf. Educ. Technol. 2(2), 185 (2012)Google Scholar
  49. 49.
    Ghorpade, J.: GPGPU processing in CUDA architecture. Adv. Comput. Int. J. (ACIJ) 3(1), 105–120 (2012)MathSciNetGoogle Scholar
  50. 50.
    Nobile, M.S., et al.: cupSODA: A CUDA-powered simulator of mass-action kinetics. In: Malyshkin, V. (ed.) PaCT 2013, LNCS 7979, pp. 344–357. Springer, Berlin (2013)Google Scholar
  51. 51.
    Ewald, R., et al.: SESSL: a domain-specific language for simulation experiments. ACM Trans. Model. Comput. Simul. (2014).  https://doi.org/10.1145/2567895 MathSciNetzbMATHGoogle Scholar
  52. 52.
    Das, B.: A network-based zoning for parallel whole-cell simulation. Bioinformatics 35(1), 88–94 (2018).  https://doi.org/10.1093/bioinformatics/bty530 Google Scholar
  53. 53.
    Junker, B.H., Klukas, C., Schreiber, F.: VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinform. 7, 109 (2006)Google Scholar
  54. 54.
    Karr, J.R., et al.: WholeCellSimDB: a hybrid relational/HDF database for whole-cell model predictions. Database (2014).  https://doi.org/10.1093/database/bau095 Google Scholar
  55. 55.
    Le Novère, N., et al.: The systems biology graphical notation. Nat. Biotechnol. 27, 735–741 (2009)Google Scholar
  56. 56.
    Karr, J., et al.: WholeCellViz: data visualization for whole-cell models. BMC Bioinform. (2013).  https://doi.org/10.1186/1471-2105-14-253 Google Scholar
  57. 57.
    Okonechnikov, K., et al.: Unipro UGENE: a unified bioinformatics toolkit. Bioinform. Appl. 28(8), 1166–1167 (2012).  https://doi.org/10.1093/bioinformatics/bts091 Google Scholar
  58. 58.
    Missan, S., McDonald, F., et al.: CESE: cell electrophysiology simulation environment. Appl. Bioinform. 4, 155–156 (2005)Google Scholar
  59. 59.
    Yugi, K., et al.: Review trans-omics: how to reconstruct biochemical networks across multiple ‘Omic’ layers. Trends Biotechnol. (2016).  https://doi.org/10.1016/j.tibtech.2015.12.013 Google Scholar
  60. 60.
    Jung, S., et al.: Chado use case: storing genomic, genetic and breeding data of Rosaceae and Gossypium crops in Chado. Database (2016).  https://doi.org/10.1093/database/baw010 Google Scholar
  61. 61.
    Yang, K., et al.: Databases and ontologies CMAP: complement map database. Bioinformatics 29, 1832–1833 (2013).  https://doi.org/10.1093/bioinformatics/btt269 Google Scholar
  62. 62.
    Wolstencroft, K., et al.: SEEK: a systems biology data and model management platform. BMC Syst. Biol. 9, 33 (2015)Google Scholar
  63. 63.
    Oberlin, A.T., et al.: Biological Database of Images and Genomes: tools for community annotations linking image and genomic information. Database (2013).  https://doi.org/10.1093/database/bat016 Google Scholar
  64. 64.
    Arkin, A.P., et al.: KBase: the United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 36, 566–569 (2018)Google Scholar
  65. 65.
    Lopez, C.F., et al.: Programming biological models in Python using PySB. Mol. Syst. Biol. (2013).  https://doi.org/10.1038/msb.2013.1 Google Scholar
  66. 66.
    Devoid, S., et al.: Automated genome annotation and metabolic model reconstruction in the SEED and model SEED. In: Alper, H.S. (ed.) Systems Metabolic Engineering: Methods and Protocols. Methods in Molecular Biology, vol. 985. Springer, Berlin (2013).  https://doi.org/10.1007/978-1-62703-299-5_2 Google Scholar
  67. 67.
    Feist, A.M., et al.: A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. (2007).  https://doi.org/10.1038/msb4100155 Google Scholar
  68. 68.
    Duina, A.A., et al.: Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system. Genetics 197, 33–48 (2014).  https://doi.org/10.1534/genetics.114.163188 Google Scholar
  69. 69.
    Earl, A.M., et al.: Ecology and genomics of Bacillus subtilis. Trends Microbiol. (2008).  https://doi.org/10.1016/j.tim.2008.03.004 Google Scholar
  70. 70.
    Kashyap, S., et al.: Mycoplasma pneumonia: clinical features and management. Lung India (2010).  https://doi.org/10.4103/0970-2113.63611 Google Scholar
  71. 71.
    Ihekwaba, A.E.C., et al.: Computational modelling and analysis of the molecular network regulating sporulation initiation in Bacillus subtilis. BMC Syst. Biol. 8, 119 (2014)Google Scholar
  72. 72.
    Bajantri, B., et al.: Mycoplasma pneumoniae: a potentially severe infection. J. Clin. Med. Res. (2018).  https://doi.org/10.14740/jocmr3421w Google Scholar
  73. 73.
    Diaz, M.H., et al.: Comprehensive bioinformatics analysis of Mycoplasma pneumoniae genomes to investigate underlying population structure and type-specific determinants. PLoS ONE 12(4), e0174701 (2017).  https://doi.org/10.1371/journal.pone.0174701 Google Scholar
  74. 74.
    Pray, L.A.: Eukaryotic genome complexity. Nat. Educ. 1(1), 96 (2008)Google Scholar

Copyright information

© Ohmsha, Ltd. and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Incubation, Innovation, Research, and ConsultancyJyothy Institute of TechnologyBengaluruIndia

Personalised recommendations