Advertisement

New Generation Computing

, Volume 37, Issue 1, pp 5–27 | Cite as

Understanding Metaphors Using Emotions

  • Sunny RaiEmail author
  • Shampa Chakraverty
  • Devendra K. Tayal
  • Divyanshu Sharma
  • Ayush Garg
Research Paper
  • 110 Downloads

Abstract

Metaphors convey unspoken emotions and perceptions by creatively applying an evocative concept from the source domain to illustrate some latent idea in the target domain. Prior research on nominal metaphor interpretation focused on identifying those properties of the source domain which are highly related to the target domain concepts to discover the most likely sense of the metaphor’s usage. In this paper, we bring forth a fresh perspective by observing that a metaphor is seldom without an emotion or sentiment; in fact, it is this very aspect which segregates it from its literal counterpart. We present an Emotion driven Metaphor Understanding system which assesses the affective dimensions of the source properties before assigning them as the most plausible sense in the context of the target domain. In our approach, we use the web as a knowledge source to identify properties of the source domain. We resolve the bottleneck of non-availability of informative emotion lexicons using pre-trained word2vec embeddings to extract the latent emotions in the source domain properties. Adopting an unsupervised learning approach on a dataset of nominal metaphors, we demonstrate that in comparison with a single emotionless interpretation, a multi-sense interpretation of a metaphor using the gamut of emotions is more likely to provide a realistic presentation of its purport. We further demonstrate that an emotion driven interpretation is often preferred over an interpretation sans emotion. The results clearly indicate that it is beneficial to apply emotions for refining the process of metaphor understanding.

Keywords

Metaphor World Wide Web Emotions Metaphor interpretation Nominal metaphor 

References

  1. 1.
    Bergmann, M.: Metaphor and formal semantic theory. Poetics 8(1–2), 213–230 (1979)CrossRefGoogle Scholar
  2. 2.
    Fainsilber, L., Ortony, A.: Metaphorical uses of language in the expression of emotions. Metaphor. Symb. 2(4), 239–250 (1987)CrossRefGoogle Scholar
  3. 3.
    Lakoff, G., Johnson, M.: Metaphors We Live By. University of Chicago Press, Chicago (2008)Google Scholar
  4. 4.
    Kövecses, Z.: Metaphor: A Practical Introduction. Oxford University Press, Oxford (2010)Google Scholar
  5. 5.
    Kintsch, W.: Metaphor comprehension: a computational theory. Psychon. Bull. Rev. 7(2), 257–266 (2000)CrossRefGoogle Scholar
  6. 6.
    Chang, S., Huang, S., Chen, Y.: Automatic detection and interpretation of nominal metaphor based on the theory of meaning. Neurocomputing 219, 300–311 (2017)CrossRefGoogle Scholar
  7. 7.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in neural information processing systems, Nevada, pp. 3111–3119 (2013)Google Scholar
  8. 8.
    Rai, S., Chakraverty, S.: Metaphor detection using fuzzy rough sets. In: International joint conference on rough sets, Springer, Olsztyn, pp. 271–279 (2017)Google Scholar
  9. 9.
    Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. (1932)Google Scholar
  10. 10.
    Gibbs, Jr., R.W.: The dynamic complexities of metaphor interpretation. DELTA: Documentação de Estudos em Lingüística Teórica e Aplicada 26(SPE):657–677 (2010)Google Scholar
  11. 11.
    Samur, D., Lai, V.T., Hagoort, P., Willems, R.M.: Emotional context modulates embodied metaphor comprehension. Neuropsychologia 78, 108–114 (2015)CrossRefGoogle Scholar
  12. 12.
    Davitz, J.R.: The Language of Emotion. Academic Press, Singapore (2016)Google Scholar
  13. 13.
    Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  14. 14.
    Martin, J.H.: A corpus-based analysis of context effects on metaphor comprehension. Trends Linguist. Stud. Monogr 171, 214 (2006)Google Scholar
  15. 15.
    Veale, T., Hao, Y.: A fluid knowledge representation for understanding and generating creative metaphors. In: Proceedings of the 22nd international conference on computational linguistics-volume 1, Manchester, pp. 945–952, Association for Computational Linguistics (2008)Google Scholar
  16. 16.
    Chang, S., Tian, J., Chen, Y.: Latent semantic similarity based interpretation of Chinese metaphors. Eng. Appl. Artif. Intell. 48, 188–203 (2016)CrossRefGoogle Scholar
  17. 17.
    Xiao, P., Alnajjar, K., Granroth-Wilding, M., Agres, K., Toivonen, H.: Meta4meaning: automatic metaphor interpretation using corpus-derived word associations. In: Proceedings of the 7th international conference on computational creativity (ICCC), Paris (2016)Google Scholar
  18. 18.
    Dalgleish, T., Power, M.: Handbook of Cognition and Emotion. Wiley, Amsterdam (2000)Google Scholar
  19. 19.
    Mohammad, S.M., Turney, P.D.: Emotions evoked by common words and phrases: using mechanical turk to create an emotion lexicon. In: Proceedings of the NAACL HLT 2010 workshop on computational approaches to analysis and generation of emotion in text, Los Angeles, pp. 26–34, Association for Computational Linguistics (2010)Google Scholar
  20. 20.
    Mohammad, S.M., Turney, P.D.: Crowdsourcing a word-emotion association lexicon. Comput. Intell. 29(3), 436–465 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Strapparava, C., Valitutti, A. et al.: Wordnet affect: an affective extension of wordnet. In: LREC, vol. 4, Lisbon, Portugal, pp. 1083–1086 (2004)Google Scholar
  22. 22.
    Firth, J.R.: A synopsis of linguistic theory, 1930–1955. Stud. Linguist. Anal. (1957)Google Scholar
  23. 23.
    Pantel, P.. Inducing ontological co-occurrence vectors. In: Proceedings of the 43rd annual meeting on association for computational linguistics, Ann Arbor, Michigan, pp. 125–132. Association for Computational Linguistics (2005)Google Scholar
  24. 24.
    Zhang, D., Hua, X., Zengcai, S., Yunfeng, X.: Chinese comments sentiment classification based on word2vec and svm perf. Expert Syst. Appl. 42(4), 1857–1863 (2015)CrossRefGoogle Scholar
  25. 25.
    Rai, S., Chakraverty, S., Tayal, D.K.: Supervised metaphor detection using conditional random fields. In: Proceedings of the 4th Workshop on Metaphor in NLP, San Diego, CA, pp. 18–27 (2016). Association of Computational LinguisticsGoogle Scholar
  26. 26.
    Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The stanford corenlp natural language processing toolkit. In: ACL (System Demonstrations), Baltimore, Maryland, pp. 55–60 (2014)Google Scholar
  27. 27.
    Loper, E., Bird, S.: Nltk: the natural language toolkit. In: Proceedings of the ACL-02 Workshop on Effective tools and methodologies for teaching natural language processing and computational linguistics, Vol. 1, Philadelphia, Pennsylvania, pp. 63–70 (2002). Association for Computational LinguisticsGoogle Scholar
  28. 28.
    Krijthe, J.: Rtsne: T-distributed stochastic neighbor embedding using barnes-hut implementation. R package version 0.10 (2015). https://cran.r-project.org/package=Rtsne
  29. 29.
    van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res 9(Nov):2579–2605 (2008)Google Scholar

Copyright information

© Ohmsha, Ltd. and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Computer EngineeringNetaji Subhas Institute of TechnologyDelhiIndia
  2. 2.Department of Computer Science and EngineeringIndira Gandhi Delhi Technical University for WomenDelhiIndia

Personalised recommendations