Advertisement

New Generation Computing

, Volume 34, Issue 1–2, pp 125–152 | Cite as

Quantum Set Theory Extending the Standard Probabilistic Interpretation of Quantum Theory

  • Masanao OzawaEmail author
Article

Abstract

The notion of equality between two observables will play many important roles in foundations of quantum theory. However, the standard probabilistic interpretation based on the conventional Born formula does not give the probability of equality between two arbitrary observables, since the Born formula gives the probability distribution only for a commuting family of observables. In this paper, quantum set theory developed by Takeuti and the present author is used to systematically extend the standard probabilistic interpretation of quantum theory to define the probability of equality between two arbitrary observables in an arbitrary state. We apply this new interpretation to quantum measurement theory, and establish a logical basis for the difference between simultaneous measurability and simultaneous determinateness.

Keywords

Quantum Logic Quantum Set Theory Quantum Theory Quantum Measurements von Neumann Algebras 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bell, J. L., Boolean-valued models and independence proofs in set theory, 2nd ed., Oxford UP, Oxford, 1985.Google Scholar
  2. 2.
    Birkhoff, G. and von Neumann, J., The logic of quantum mechanics, Ann. Math. 37, pp. 823–843, 1936.Google Scholar
  3. 3.
    Bruns G. and Kalmbach, G., “Some remarks on free orthomodular lattices,” Proc. Lattice Theory Conf., Houston, U.S.A., (Schmidt, J. ed.), pp. 397–408, 1973.Google Scholar
  4. 4.
    Chevalier G.: “Commutators and decompositions of orthomodular lattices,”. Order 6, 181–194 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cohen P. J.: “The independence of the continuum hypothesis I,”. Proc. Nat. Acad. Sci. U.S.A. 50, 1143–1148 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cohen, P. J., Set theory and the continuum hypothesis, Benjamin, New York, 1966.Google Scholar
  7. 7.
    Davies, E. B., Quantum theory of open systems, Academic, London, 1976.Google Scholar
  8. 8.
    Gibbins, P., Particles and paradoxes: The limits of quantum logic, Cambridge UP, Cambridge, UK, 1987.Google Scholar
  9. 9.
    Halmos, P. R., Introduction to Hilbert space and the theory of spectral multiplicity, Chelsea, New York, 1951.Google Scholar
  10. 10.
    Halvorson H., Clifton R.: “Maximal beable subalgebras of quantum mechanical observables,”. Int. J. Theor. Phys. 38, 2441–2484 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Holland, Jr., S. S., “Orthomodularity in infinite dimensions; A theorem of M. Solèr,” Bull. Amer. Math. Soc. 32, pp. 205–234, 1995.Google Scholar
  12. 12.
    Kalmbach, G., Orthomodular lattices, Academic, London, 1983.Google Scholar
  13. 13.
    Kochen S., Specker E. P.: “The problem of hidden variables in quantum mechanics,”. J. Math. Mech. 17, 59–87 (1967)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Marsden E. L.: “The commutator and solvability in a generalized orthomodular lattice,”. Pacific J. Math. 33, 357–361 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Okamura, K. and Ozawa, M., “Measurement theory in local quantum physics,” J. Math. Phys. 57, pp. 015209/1–015209/29, 2016.Google Scholar
  16. 16.
    Ozawa M.: “Boolean valued analysis and type I \({{\rm AW}^*}\)-algebras,”. Proc. Japan Acad. A 59, 368–371 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ozawa M.: “Boolean valued interpretation of Hilbert space theory,”. J. Math. Soc. Japan 35, 609–627 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ozawa M.: “A classification of type I \({{\rm AW}^*}\)-algebras and Boolean valued analysis,”. J. Math. Soc. Japan 36, 589–608 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ozawa M.: “Quantum measuring processes of continuous observables,”. J. Math. Phys. 25, 79–87 (1984)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ozawa M.: “Nonuniqueness of the cardinality attached to homogeneous \({{\rm AW}^*}\)-algebras,”. Proc. Amer. Math. Soc. 93, 681–684 (1985)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Ozawa M.: “Uncertainty relations for noise and disturbance in generalized quantum measurements,”. Ann. Physics 311, 350–416 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ozawa M.: “Quantum perfect correlations,”. Ann. Physics 321, 744–769 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ozawa M.: “Transfer principle in quantum set theory,”. J. Symbolic Logic 72, 625–648 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ozawa M.: “Quantum reality and measurement: A quantum logical approach,”. Found. Phys. 41, 592–607 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ozawa, M., “Universal uncertainty principle, simultaneous measurability, and weak values,” AIP Conf. Proc. 1363, pp. 53–62, 2011. arXiv:1106.5083 [quant-ph].
  26. 26.
    Ozawa, M., “Quantum set theory extending the standard probabilistic interpretation of quantum theory (extended abstract),” Electronic Proc. in Theoretical Computer Science (EPTCS) 172, pp. 15–26, 2014. arXiv:1412.8540 [quant-ph].
  27. 27.
    Pulmannová S.: “Commutators in orthomodular lattices,”. Demonstratio Math. 18, 187–208 (1985)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Redhead, M., Incompleteness, nonlocality, and realism: A prolegomenon to the philosophy of quantum mechanics, Oxford UP, Oxford, 1987.Google Scholar
  29. 29.
    Scott, D. and Solovay, R., “Boolean-valued models for set theory,” unpublished manuscript for Proc. AMS Summer Institute on Set Theory, Los Angeles: Univ. Cal., 1967.Google Scholar
  30. 30.
    Takeuti, G., Two applications of logic to mathematics, Princeton UP, Princeton, 1978.Google Scholar
  31. 31.
    Takeuti, G., “Quantum set theory,” Current Issues in Quantum Logic (Beltrametti, E. G. and van Fraassen, B. C., eds.), Plenum, New York, pp. 303–322, 1981.Google Scholar
  32. 32.
    Takeuti G.: “\({{\rm C}^*}\)-Algebras and Boolean valued analysis,”. Japan. J. Math. 9, 207–245 (1983)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Takeuti G.: “Von Neumann algebras and Boolean valued analysis,”. J. Math. Soc. Japan 35, 1–21 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Varadarajan, V. S., Geometry of quantum theory, Springer, New York, 1985.Google Scholar
  35. 35.
    von Neumann, J., Mathematical foundations of quantum mechanics, Princeton UP, Princeton, NJ, 1955, [Originally published: Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)].Google Scholar

Copyright information

© Ohmsha and Springer Japan 2016

Authors and Affiliations

  1. 1.Nagoya UniversityChikusa-ku, NagoyaJapan

Personalised recommendations