New Generation Computing

, Volume 34, Issue 1–2, pp 25–68 | Cite as

Semantics for a Quantum Programming Language by Operator Algebras

  • Kenta Cho


This paper presents a novel semantics for a quantum programming language by operator algebras, which are known to give a formulation for quantum theory that is alternative to the one by Hilbert spaces. We show that the opposite of the category of W*-algebras and normal completely positive subunital maps is an elementary quantum flow chart category in the sense of Selinger. As a consequence, it gives a denotational semantics for Selinger’s first-order functional quantum programming language. The use of operator algebras allows us to accommodate infinite structures and to handle classical and quantum computations in a unified way.


Quantum Computation Quantum Programming Languages Operator Algebras Denotational Semantics Complete Partial Orders 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky, S. and Jung, A., “Domain theory,” in Handbook of Logic in Computer Science, 3, pp. 1–168, Oxford University Press, 1994. Corrected and expanded version available online.Google Scholar
  2. 2.
    Araki, H., Mathematical Theory of Quantum Fields, International Series of Monographs on Physics 101, Oxford University Press, 1999. Originally published in Japanese as Ryoshiba no Suri (Iwanami Shoten, 1993).Google Scholar
  3. 3.
    Arbib M. A., Manes E. G.: “Partially additive categories and flow-diagram semantics,”. Journal of Algebra 62(1), 203–227 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Blackadar, B., Operator Algebras: Theory of C*-Algebras and von Neumann Algebras, Encyclopaedia of Mathematical Sciences 122, Springer, 2006.Google Scholar
  5. 5.
    Bratteli, O. and Robinson, D. W., Operator Algebras and Quantum Statistical Mechanics (2 volumes), second ed., Texts and Monographs in Physics, Springer, 1987/1997.Google Scholar
  6. 6.
    Brown, N. P. and Ozawa, N., C*-Algebras and Finite-Dimensional Approximations, Graduate Studies in Mathematics 88, American Mathematical Society, 2008.Google Scholar
  7. 7.
    Chiribella, G., Toigo, A. and Umanità, V., “Normal completely positive maps on the space of quantum operations,” Open Systems & Information Dynamics, 20, 1, 2013.Google Scholar
  8. 8.
    Cho, K., “Semantics for a quantum programming language by operator algebras,” Master’s thesis, The University of Tokyo, Feb. 2014.Google Scholar
  9. 9.
    Cho, K., “Semantics for a quantum programming language by operator algebras,” in Proc. of QPL 2014, EPTCS 172, pp. 165–190, 2014.Google Scholar
  10. 10.
    Conway, J. B., A Course in Functional Analysis, second ed., Graduate Texts in Mathematics 96, Springer, 1990.Google Scholar
  11. 11.
    Conway, J. B., A Course in Operator Theory, Graduate Studies in Mathematics 21, American Mathematical Society, 2000.Google Scholar
  12. 12.
    D’Ariano G. M., Kretschmann D., Schlingemann D., Werner R. F.: “Reexamination of quantum bit commitment: The possible and the impossible,”. Physical Review A 76, 032328 (2007)CrossRefGoogle Scholar
  13. 13.
    Davies, E. B., Quantum Theory of Open Systems, Academic Press, 1976.Google Scholar
  14. 14.
    D’Hondt E., Panangaden P.: “Quantum weakest preconditions,”. Mathematical Structures in Computer Science 16(03), 429–451 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Furber, R., “Categorical Duality in Probability and Quantum Foundations,” PhD thesis, Radboud University, Nijmegen, to appear.Google Scholar
  16. 16.
    Furber, R. and Jacobs, B., “From Kleisli categories to commutative C*-algebras: Probabilistic Gelfand duality,” in Proc. of CALCO 2013, LNCS 8089, pp. 141–157, Springer, 2013.Google Scholar
  17. 17.
    Gay S. J.: “Quantum programming languages: survey and bibliography,”. Mathematical Structures in Computer Science 16(04), 581–600 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Guichardet, A., “Sur la catégorie des algèbres de von Neumann,” Bulletin des Sciences Mathématiques (2e série), 90, pp. 41–64, 1966.Google Scholar
  19. 19.
    Haag, R., Local Quantum Physics: Fields, Particles, Algebras, second ed., Theoretical and Mathematical Physics, Springer, 1996.Google Scholar
  20. 20.
    Haag R., Kastler D.: “An algebraic approach to quantum field theory,”. Journal of Mathematical Physics 5(7), 848–861 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hasegawa, M., Models of Sharing Graphs: A Categorical Semantics of let and letrec, Distinguished Dissertations, Springer, 1999.Google Scholar
  22. 22.
    Hasuo, I. and Hoshino, N., “Semantics of higher-order quantum computation via geometry of interaction,” in Proc. of LICS 2011, IEEE, 2011.Google Scholar
  23. 23.
    Heinosaari, T. and Ziman, M., The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement, Cambridge University Press, 2012.Google Scholar
  24. 24.
    Hoshino, N., Muroya, K. and Hasuo, I., “Memoryful geometry of interaction: From coalgebraic components to algebraic effects,” in Proc. of CSL-LICS 2014, ACM, 2014. Extended version with appendix is available at the first author’s website.Google Scholar
  25. 25.
    Jacobs, B., “On block structures in quantum computation,” in Proc. of MFPS XXIX, ENTCS 298, pp. 233–255, Elsevier, 2013.Google Scholar
  26. 26.
    Kelly, G. M., “Basic concepts of enriched category theory,” Reprints in Theory and Applications of Categories, 10, pp. 1–136, 2005. Originally published by Cambridge University Press in 1982.Google Scholar
  27. 27.
    Keyl M.: “Fundamentals of quantum information theory,”. Physics Reports 369(5), 431–548 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kornell, A., “Quantum collections,” arXiv:1202.2994v1 [math.OA], Feb. 2012.
  29. 29.
    Kraus, K., States, Effects, and Operations: Fundamental Notions of Quantum Theory, Lecture Notes in Physics 190, Springer, 1983.Google Scholar
  30. 30.
    Landsman, N. P., “Algebraic quantum mechanics,” in Compendium of Quantum Physics, pp. 6–10, Springer, 2009.Google Scholar
  31. 31.
    Malherbe, O., Scott, P. and Selinger, P., “Presheaf models of quantum computation: An outline,” in Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky, LNCS 7860, pp. 178–194, Springer, 2013.Google Scholar
  32. 32.
    Manes, E. G. and Arbib, M. A., Algebraic Approaches to Program Semantics, Monographs in Computer Science, Springer, 1986.Google Scholar
  33. 33.
    Meyer, R., “Categorical aspects of bivariant K-theory,” in K-Theory and Noncommutative Geometry, EMS Series of Congress Reports, pp. 1–39, European Mathematical Society, 2008.Google Scholar
  34. 34.
    Murray F. J., von Neumann J.: “On rings of operators,”. Annals of Mathematics 37(1), 116–229 (1936)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Murray F. J., von Neumann J.: “On rings of operators. II,”. Transactions of the American Mathematical Society 41(2), 208–248 (1937)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Murray F. J., von Neumann J.: “On rings of operators. IV,”.. Annals of Mathematics 44(4), 716–808 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Negrepontis J. W.: “Duality in analysis from the point of view of triples,”. Journal of Algebra 19(2), 228–253 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Nielsen, M. A. and Chuang, I. L., Quantum Computation and Quantum Information, Cambridge University Press, 2000.Google Scholar
  39. 39.
    Pagani, M., Selinger, P. and Valiron, B., “Applying quantitative semantics to higher-order quantum computing,” in Proc. of POPL 2014, 2014.Google Scholar
  40. 40.
    Paulsen, V., Completely Bounded Maps and Operator Algebras, Cambridge Studies in Advanced Mathematics 78, Cambridge University Press, 2003.Google Scholar
  41. 41.
    Pedersen, G. K., C*-algebras and their automorphism groups, Academic Press, 1979.Google Scholar
  42. 42.
    Pedersen, G. K., Analysis Now, Graduate Texts in Mathematics 118, Springer, 1989.Google Scholar
  43. 43.
    Rédei M.: “Why John von Neumann did not like the Hilbert space formalism of quantum mechanics (and what he liked instead),”. Studies in History and Philosophy of Modern Physics 27(4), 493–510 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Rennela, M., “On operator algebras in quantum computation,” Master’s thesis, Université Paris 7 Denis Diderot, 2013.Google Scholar
  45. 45.
    Rennela, M., “Towards a quantum domain theory: Order-enrichment and fixpoints in W*-algebras,” in Proc. of MFPS XXX, ENTCS 308, pp. 289–307, Elsevier, 2014.Google Scholar
  46. 46.
    Ryan, R. A., Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics, Springer, 2002.Google Scholar
  47. 47.
    Sakai S.: “A characterization of W*-algebras,”. Pacific Journal of Mathematics 6(4), 763–773 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Sakai, S., C*-Algebras and W*-Algebras, Classics in Mathematics, Springer, 1998. Reprint of the 1971 Edition.Google Scholar
  49. 49.
    Segal I. E.: “Equivalences of measure spaces,”. American Journal of Mathematics 73(2), 275–313 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Selinger P.: “Towards a quantum programming language,”. Mathematical Structures in Computer Science 14(04), 527–586 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Selinger P., Valiron B.: “A lambda calculus for quantum computation with classical control,”. Mathematical Structures in Computer Science 16(03), 527–552 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Selinger, P. and Valiron, B., “On a fully abstract model for a quantum linear functional language: (extended abstract),” in Proc. of QPL 2006, ENTCS 210, pp. 123–137, Elsevier, 2008.Google Scholar
  53. 53.
    Selinger, P. and Valiron, B., “Quantum lambda calculus,” in Semantic Techniques in Quantum Computation, pp. 135–172, Cambridge University Press, 2009.Google Scholar
  54. 54.
    Takesaki, M., Theory of Operator Algebras (3 volumes), Encyclopaedia of Mathematical Sciences 124–125, 127, Springer, 2001/2003.Google Scholar
  55. 55.
    Valiron B.: “Quantum computation: From a programmer’s perspective,”. New Generation Computing 31(1), 1–26 (2013)CrossRefzbMATHGoogle Scholar
  56. 56.
    von Neumann J.: “On rings of operators. III,”. Annals of Mathematics 41(1), 94–161 (1940)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    von Neumann J.: “On rings of operators. Reduction theory,”.. Annals of Mathematics 50(2), 401–485 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    von Neumann, J., Mathematical Foundations of Quantum Mechanics, Princeton University Press, 1955. Originally published in German as Mathematische Grundlagen der Quantenmechanik (Springer, 1932).Google Scholar
  59. 59.
    Yu, S., “Positive maps that are not completely positive,” Physical Review A, 62, 024302, 2000.Google Scholar

Copyright information

© Ohmsha and Springer Japan 2016

Authors and Affiliations

  1. 1.Institute for Computing and Information SciencesRadboud UniversityNijmegenThe Netherlands

Personalised recommendations