New Generation Computing

, Volume 33, Issue 3, pp 253–270 | Cite as

Automatic Recognition of DNA Pliers in Atomic Force Microscopy Images

  • Yuexing Han
  • Akito Hara
  • Akinori Kuzuya
  • Ryosuke Watanabe
  • Yuichi Ohya
  • Akihiko Konagaya
Article

Abstract

Bottom-up fabrication techniques are expected to alleviate the limitations of top-down fabrication. Bottom-up fabrication requires self-assembling facilities to construct complex structures including DNA nanostructures, DNA robots, further molecular robots, and so on. DNA origami is one of buttom-up fabrication techniques. In this paper, we focus on the automatic recognition of flexible DNA origami named “DNA pliers” in AFM (atomic force microscopy) image. Auto recognition of DNA pliers is challenging and necessary since DNA pliers can have several forms: parallel, cross, and anti-parallel forms, depending on hinge angles. Our method uses the information of the curvature scale space method and convexity-concavity detection extracted from DNA pliers. The experiments show that the combination of the curvature scale space method and convexity-concavity detection can work well for DNA pliers recognition if appropriate contour information for the DNA pliers is available from an AFM image.

Keywords

Atomic Force Microscope (AFM) Image Analysis Curvature Scale Space Technique Convexity-concavity Detection DNA Nanostructures Molecular Robotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tour J.M.: “Top-Down versus Bottom-Up Fabrication of Graphene-Based Electronics”. Chemistry of Materials, 26, 163–171 (2014)CrossRefGoogle Scholar
  2. 2.
    Kuzuya A, Ohya Y: “DNA nanostructures as scaffolds for metal nanoparticles”. Polymer Journal, 44, 452–460 (2012)CrossRefGoogle Scholar
  3. 3.
    Murata S, Konagaya A, Kobayashi S, Saito H, Hagiya M: “Molecular Robotics: A New Paradigm for Artifacts”. New Generation Computing, 31, 27–45 (2013)CrossRefGoogle Scholar
  4. 4.
    Rothemund P.W.K.: “Folding DNA to create nanoscale shapes and patterns”. Nature, 440, 297–302 (2006)CrossRefGoogle Scholar
  5. 5.
    Kuzuya, A., Sakai, Y., Yamazaki, T., Xu, Y. and Komiyama, M., “Nanomechanical DNA origami ‘single-molecule beacons’ directly imaged by atomic force microscopy,” Nature Communications, 2, 449, doi:10.1038/ncomms1452, 2011.
  6. 6.
    Yamazaki T, Aiba Y, Yasuda K, Sakai Y, Yamanaka Y, Kuzuya A, Ohya Y, Komiyama M.: “Clear-cut observation of PNA invasion using nanomechanical DNA origami devices”. Chemical Communications, 48, 11361–11363 (2012)CrossRefGoogle Scholar
  7. 7.
    Lund K, Manzo A, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, Taylor S, Pei R, Stojanovic M, Walter N, Winfree E, Yan H: “Molecular robots guided by prescriptive landscapes”. Nature, 465, 206–210 (2010)CrossRefGoogle Scholar
  8. 8.
    Mokhtarian F, Mackworth A: “Scale-Based Description and Recognition of Planar Curves and Two-Dimensional Shapes”. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8, 1, 34–43 (1986)CrossRefGoogle Scholar
  9. 9.
    Mokhtarian, F. and Mackworth, A., “A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 8, pp. 789–805, 1992.Google Scholar
  10. 10.
    Mokhtarian, F. and Bober, M., Curvature Scale Space Representation: Theory, Applications, and Mpeg-7 Standardization (Computational Imaging and Vision), Kluwer Academic Pub, United States, 2003.07.Google Scholar
  11. 11.
    Han, Y., Koike, H. and Idesawa, M., “Recognizing Objects with Multiple Configurations,” Pattern Analysis and Applications, 17, 1, pp. 195–209, 2014.Google Scholar
  12. 12.
    Bay, H., Ess, A., Tuytelaars, T. and Gool, L. V., “Speeded-Up Robust Features (SURF),” Computer Vision and Image Understanding (CVIU), 110, 3, pp. 346–359, 2008.Google Scholar
  13. 13.
    Han Y, Wang B, Idesawa M, Shimai H: “Recognition of Multiple Configurations of Objects with Limited Data”. Pattern Recognition, 43, 1467–1475 (2010)CrossRefMATHGoogle Scholar
  14. 14.
    Han, Y., “Recognize Objects with Three Kinds of Information in Landmarks,” Pattern Recognition, 46, 11, pp. 2860–2873, 2013.Google Scholar
  15. 15.
    Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T. and Yoon, W., “RT-Middleware: Distributed Component Middleware for RT (Robot Technology),” 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2005), pp. 3933–3938, 2005.08.Google Scholar
  16. 16.
    Ando, N., Suehiro, T. and Kotoku, T., “A Software Platform for Component Based RT-System Development: OpenRTM-Aist,” International Conference on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS (SIMPAR 2008), Venice, Italy, ISSN 0302-9743, pp.87–98, 2008.Google Scholar
  17. 17.
    Han, Y., Sumi, Y., Matsumoto, Y. and Ando, N., “Acquisition of Object Pose from Barcode for Robot Manipulation,” Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR 2012), Tsukuba, Japan, Date: 5-8 Nov. 2012, pp. 299–310, 2012.Google Scholar
  18. 18.

Copyright information

© Ohmsha and Springer Japan 2015

Authors and Affiliations

  • Yuexing Han
    • 1
    • 2
  • Akito Hara
    • 2
  • Akinori Kuzuya
    • 3
    • 4
  • Ryosuke Watanabe
    • 3
  • Yuichi Ohya
    • 3
  • Akihiko Konagaya
    • 2
    • 5
  1. 1.School of Computer Engineering and ScienceShanghai UniversityBaoShan District, ShanghaiChina
  2. 2.Tokyo Institute of TechnologyTokyoJapan
  3. 3.Kansai UniversityOsakaJapan
  4. 4.JSTTokyoJapan
  5. 5.National Institute of InformaticsTokyoJapan

Personalised recommendations