New Generation Computing

, Volume 33, Issue 3, pp 271–295 | Cite as

Dynamic Simulation of 1D Cellular Automata in the Active aTAM

  • Nataša Jonoska
  • Daria Karpenko
  • Shinnosuke Seki


The Active aTAM is a tile based model for self-assembly where tiles are able to transfer signals and change identities according to the signals received. We extend Active aTAM to include deactivation signals and thereby allow detachment of tiles. We show that the model allows a dynamic simulation of cellular automata with assemblies that do not record the entire computational history but only the current updates of the states, and thus provide a way for (a) algorithmic dynamical structural changes in the assembly and (b) reusable space in self-assembly. The simulation is such that at a given location the sequence of tiles that attach and detach corresponds precisely to the sequence of states the synchronous cellular automaton generates at that location.


DNA Self-Assembly Activa aTAM Cellular Automaton Signaling Dynamic Simulation Synchronization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Self-assembly wiki.
  2. 2.
    Barish R. D., Rothemund P. W. K., Winfree E.: “Two computational primitives for algorithmic self-assembly: Copying and counting,”. Nano Lett., 5(12), 2586–2592 (2005)CrossRefGoogle Scholar
  3. 3.
    Chakraborty B., Jonoska N., Seeman N. C.: “A programmable transducer self-assembled from DNA,”. Chem. Sci., 3(1), 168–176 (2012)CrossRefGoogle Scholar
  4. 4.
    Cheng Q., Aggarwal G., Goldwasser M. H., Kao M.-Y., Schweller R. T., de Espans P. M.: “Complexities for generalized models of self-assembly,”. SIAM Journal on Computing, 34, 1493–1515 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fujibayashi K., Hariadi R., Park S., Winfree E., Murata S.: “Toward reliable algorithmic self-assembly of DNA tiles: A fixed-width cellular automaton pattern,”. Nano Lett., 8(7), 1791–1797 (2008)CrossRefGoogle Scholar
  6. 6.
    Gu H., Chao J., Xiao S.-J., Seeman N. C.: “A proximity-based programmable dna nanoscale assembly line,”. Nature, 465(7295), 202–205 (2010)CrossRefGoogle Scholar
  7. 7.
    He, X., Sha, R., Mi, Y., Chaikin, P. and Seeman, N., “Self-replication, exponential growth, selection and competition in systems of DNA origami tiles,” Science, 2015, under review.Google Scholar
  8. 8.
    Hendricks, J. and Patitz, M., “On the equivalence of cellular automata and the tile assembly model,” in Proc. MCU 2013, EPTCS, 128, pp. 167–189, 2013.Google Scholar
  9. 9.
    Jonoska N., Karpenko D.: “Active tile self-assembly, part 1: Universality at temperature 1,”. Int. J. Found. Comput. Sci., 25, 141–163 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Keenan, A., Schweller, R. and Zhong, X., “Exponential replication of patterns in the signal tile assembly model,” in Proc. DNA19 - 2013, LNCS, 8141, pp. 118–132, Springer, 2013.Google Scholar
  11. 11.
    Mao C., LaBean T. H., Reif J. H., Seeman N. C.: “Logical computation using algorithmic self-assembly of DNA triple-crossover molecules,”. Nature, 407, 493–496 (2000)CrossRefGoogle Scholar
  12. 12.
    Meunier, P.-E., “A pumping lemma for non-cooperative self-assembly,” arXiv:1312.6668, 2014.
  13. 13.
    Padilla, J. E., Patitz, M. J., Pena, R., Schweller, R. T., Seeman, N. C., Sheline, R., Summers, S. M., and Zhong, X., “Asynchronous signal passing for tile self-assembly: Fuel efficient computation and efficient assembly of shapes,” in Proc. UCNC 2013, LNCS, 7956, pp. 174–185, Springer, 2013.Google Scholar
  14. 14.
    Padilla, J. E., Sha, R., Kristiansen, M., Chen, J., Jonoska, N. and Seeman, N. C., “A signal-passing DNA-strand-exchange mechanism for active self-assembly of DNA nanostructures,” Angewandte Chemie International Edition, 2015. doi: 10.1002/anie.201500252.
  15. 15.
    Qian, L. and Winfree, E., “A simple dna gate motif for synthesizing large-scale circuits,” Journal of The Royal Society Interface, 2011.Google Scholar
  16. 16.
    Winfree, E., “Algorithmic Self-Assembly of DNA,” Ph.D. thesis, California Institute of Technology, June 1998.Google Scholar
  17. 17.
    Yurke B., Turberfield A.J., Mills A.P., Simmel F.C., Neumann J.L.: “A DNA-fuelled molecular machine made of DNA,”. Nature, 406(6796), 605–608 (2000)CrossRefGoogle Scholar

Copyright information

© Ohmsha and Springer Japan 2015

Authors and Affiliations

  • Nataša Jonoska
    • 1
  • Daria Karpenko
    • 1
  • Shinnosuke Seki
    • 2
    • 3
  1. 1.Department of Mathematics and StatisticsUniversity of South FloridaTampaUSA
  2. 2.Helsinki Institute for Information Technology (HIIT), Department of Computer ScienceAalto UniversityAaltoFinland
  3. 3.Department of Communication Engineering and InformaticsUniversity of Electro-CommunicationsTokyoJapan

Personalised recommendations