Advertisement

New Generation Computing

, Volume 30, Issue 4, pp 271–296 | Cite as

Quantum Computation: a Tutorial

  • Benoît ValironEmail author
Tutorial Part 1

Abstract

This tutorial is the first part of a series of two articles on quantum computation. In this first paper, we present the field of quantum computation from a broad perspective. We review the mathematical background and informally discuss physical implementations of quantum computers. Finally, we present the main primitives used in quantum algorithms.

Keywords

Quantum Computation Quantum Algorithms Quantum Computers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bell J.S.: “On the Einstein Podolsky Rosen paradox”. Physics 1, 195–200 (1964)Google Scholar
  2. 2.
    Bennett, C. H. and Brassard, G., “Quantum cryptography: Public key distribution and coin tossing,” in Proc. of the IEEE Int. Conf. on Computers, Systems, and Signal Processing, pp. 175–179, 1984.Google Scholar
  3. 3.
    Bennett C.H. et al.: “Experimental quantum cryptography”. J. Cryptology 5 1, 3–28 (1992)Google Scholar
  4. 4.
    Bennett C.H. et al.: “Generalized privacy amplification”. IEEE Transactions on Information Theory 41(6), 1915–1923 (1995)zbMATHCrossRefGoogle Scholar
  5. 5.
    Blatt R., Wineland D.: “Entangled states of trapped atomic ions”. Nature 453, 1008–1015 (2008)CrossRefGoogle Scholar
  6. 6.
    Chen, G. et al., Quantum Computing Devices: Principles, Designs, and Analysis, Chapman and Hall/CRC, 2007.Google Scholar
  7. 7.
    D-Wave, http://www.dwavesys.com/, electronic resource.
  8. 8.
    DiVincenzo D.P.: “The physical implementation of quantum computation”. Fortschr. Phys 48, 771–783 (2000)zbMATHCrossRefGoogle Scholar
  9. 9.
    IDQ, http://www.idquantique.com/, electronic resource.
  10. 10.
    Jordan, S., http://math.nist.gov/quantum/zoo/, electronic resource.
  11. 11.
    Kaye, P., Laflamme, R., Mosca, M., An Introduction to Quantum Computing, Oxford University Press, 2007.Google Scholar
  12. 12.
    Kempe J.: “Quantum random walks: An introductory overview”. Contemporary Physics 44(4), 307–327 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Knill E., Laflamme R., Milburn G.J.: “A scheme for efficient quantum computation with linear optics”. Nature 409, 46–52 (2001)CrossRefGoogle Scholar
  14. 14.
    Ladd T.D. et al.: “Quantum computers”. Nature 464, 45–53 (2010)CrossRefGoogle Scholar
  15. 15.
    Lydersen, L. et al., “Hacking commercial quantum cryptography systems by tailored bright illumination," Nature Photonics, 2010.Google Scholar
  16. 16.
    magiQ, http://www.magiqtech.com/MagiQ/Home.html, electronic resource.
  17. 17.
    Monz T. et al.: “14-qubit entanglement: Creation and coherence”. Phys. Rev. Lett. 106, 130506 (2011)CrossRefGoogle Scholar
  18. 18.
    Negrevergne C. et al.: “Benchmarking quantum control methods on a 12-qubit system”. Phys. Rev. Lett. 96, 170501 (2006)CrossRefGoogle Scholar
  19. 19.
    Nielsen, M. A. and Chuang, I. L., Quantum Computation and Quantum Information, Cambridge University Press, 2002.Google Scholar
  20. 20.
    Valiron, B., “Quantum computation: from a programmer’s perspective,” New Generation Computing, 31, 1. To appear.Google Scholar
  21. 21.
    Vandersypen L.M.K. et al.: “Experimental realization of shor’s quantum factoring algorithm using nuclear magnetic resonance”. Nature 414, 883–887 (2001)CrossRefGoogle Scholar

Copyright information

© Ohmsha and Springer Japan 2012

Authors and Affiliations

  1. 1.University of Pennsylvania, Department of Computer and Information SciencePhiladelphiaUSA

Personalised recommendations