New Generation Computing

, Volume 31, Issue 1, pp 1–26 | Cite as

Quantum Computation: From a Programmer’s Perspective

  • Benoît Valiron
Tutorial Part 2


This paper is the second part of a series of two articles on quantum computation. If the first part was mostly concerned with the mathematical formalism, here we turn to the programmer’s perspective. We analyze the various existing models of quantum computation and the problem of the stability of quantum information. We discuss the needs and challenges for the design of a scalable quantum programming language. We then present two interesting approaches and examine their strengths and weaknesses. Finally, we take a step back, and review the state of the research on the semantics of quantum computation, and how this can help in achieving some of the goals.


Quantum Computation Models of Computation Quantum Programming Language Semantics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky, S. and Coecke, B., "A categorical semantics of quantum protocols," in Proc. of LICS’04, pp. 415–425, 2004.Google Scholar
  2. 2.
    Altenkirch, T. and Grattage, J., "A functional quantum programming language," in Proc. of LICS’05, pp. 249–258, 2005.Google Scholar
  3. 3.
    Barendregt, H. P., The Lambda-Calculus, its Syntax and Semantics, North Holland, 1984.Google Scholar
  4. 4.
    Bettelli S., Calarco T., Serafini L.: "Toward an architecture for quantum programming". The European Physical Journal D. 25(2), 181–200 (2003)CrossRefGoogle Scholar
  5. 5.
    Blute R.F., Cockett J. R.B., Seely R. A. G.: "Differential categories". Math. Struct. in Comp. Sc. 16(6), 1049–1083 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Broadbent A., Kashefi E.: "Parallelizing quantum circuits," . Th. Comp. Sc. 410(26), 2489–2510 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Danos, V., Kashefi, E., Panangaden, P. and Perdrix, S., "Extended measurement calculus," Ch. 713), pp. 235–310.Google Scholar
  8. 8.
    Dixon L., Duncan R.: "Graphical reasoning in compact closed categories for quantum computation". Annals of Math. and Art. Int. 56, 23–42 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Duncan, R. and Perdrix, S., "Rewriting measurement-based quantum computations with generalised flow," in Proc. of ICALP’10, pp. 285–296, 2010.Google Scholar
  10. 10.
    Ehrhard T.: "On Kö the sequence spaces and linear logic". Math. Struct. in Comp. Sc. 12(5), 579–623 (2002)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Ehrhard T.: "Finiteness spaces". Math. Struct. in Comp. Sc. 15(4), 615–646 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Ehrhard, T. and Regnier, L., "The differential lambda-calculus," Th. Comp. Sc., 309, 1–2, pp. 1–41, 2003.Google Scholar
  13. 13.
    Gay, S. J., Mackie, I., editors, Semantic Techniques in Quantum Computation, Cambridge University Press, 2009.Google Scholar
  14. 14.
    Gay S. J: "Quantum programming languages Survey and bibliography". Math. Struct. in Comp. Sc. 16(4), 581–600 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Girard J.Y.: "Linear logic". Th Comp Sc. 50(1), 1–101 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Girard, J. Y., "Between logic and quantic: A tract," in Linear logic in computer science, Cambridge University Press, 2004.Google Scholar
  17. 17.
    Green, A. and Altenkirch, T., "The quantum IO monad," Ch. 513), pp. 173–205.Google Scholar
  18. 18.
    Hasuo, I. and Hoshino, N., "Semantics of higher-order quantum computation via geometry of interaction," in Proc. of LICS’11, pp. 237–246, 2011.Google Scholar
  19. 19.
    Howard, W., "The formulae–as–types notion of construction," in To H.B. Curry: essays on combinatory logic, lambda calculus, and formalism, Academic Press, pp. 479–490, 1980.Google Scholar
  20. 20.
    Kaye, P., Laflamme, R, and Mosca M., An Introduction to Quantum Computing, Oxford University Press, 2007.Google Scholar
  21. 21.
    Knill, E. H., "Conventions for quantum pseudocode," Tech. Rep. LAUR-96- 2724, Los Alamos National Laboratory, 1996.Google Scholar
  22. 22.
    Nielsen M. A. and Chuang I. L., Quantum Computation and Quantum Information, Cambridge University Press, 2002.Google Scholar
  23. 23.
    Ömer B., "Quantum programming in QCL", Master’s thesis, Institute of Information Systems, Technical University of Vienna, 2000.Google Scholar
  24. 24.
    Raussendorf R., Briegel H. J.: "A one-way quantum computer". Phys Rev Lett. 86(22), 5188–5191 (2001)CrossRefGoogle Scholar
  25. 25.
    Sanders, J. W. and Zuliani, P., "Quantum programming," in Proc. of MPC’00, pp. 80–99, 2000.Google Scholar
  26. 26.
    Selinger P.: "Towards a quantum programming language". Math. Struct. in Comp. Sc. 14(4), 527–586 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Selinger, P. and Valiron, B., "On a fully abstract model for a quantum linear functional language," in Proc. of QPL’06, ENTCS 210, pp. 123–137, 2008.Google Scholar
  28. 28.
    Selinger P., Valiron B.: "A lambda calculus for quantum computation with classical control". Math. Struct. in Comp. Sc. 16(3), 527–552 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Selinger P. and Valiron, B., "Quantum lambda-calculus," Ch413), pp. 135–172.Google Scholar
  30. 30.
    Valiron, B., "Quantum computation: a tutorial," New Generation Computing, 2012. To appear.Google Scholar
  31. 31.
    van Tonder A.: "A lambda calculus for quantum computation". SIAM Journal of Computing. 33(5), 1109–1135 (2004)zbMATHCrossRefGoogle Scholar
  32. 32.
    Winskel, G., The Formal Semantics of Programming Languages, MIT Press, 1993.Google Scholar

Copyright information

© Ohmsha and Springer Japan 2013

Authors and Affiliations

  1. 1.Department of Computer and Information ScienceUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations