Advertisement

New Generation Computing

, Volume 28, Issue 4, pp 371–403 | Cite as

Combining Document Classification and Ontology Alignment for Semantically Enriching Web Services

  • Marco Crasso
  • Alejandro Zunino
  • Marcelo Campo
Article

Abstract.

Semantic Web Services represent the basic blocks for building a network of distributed and heterogeneous applications, without human intervention. Despite the high level of automatism that can be achieved with Semantic Web Services technology, this is not broadly adopted. One factor that hinders the widespread usage of this technology is the effort required to annotate semantically ordinary services. This paper presents AWSA (Automatic Web Service Annotator), an approach for easing the conversion of Web Services into Semantic Web enabled services. The main idea behind AWSA is to annotate Web Services with concepts defined by existing ontologies, which have been used for annotating similar services in the past. This approach combines text preprocessing, document classification and ontology alignment techniques to extract valuable information conveyed in standard service descriptions, reduce the search space and find proper concepts for the service being annotated, respectively. Experimental evaluations show the feasibility of the proposed approach.

Keywords

Semantic Web Services Document Classification Ontology Alignment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baeza-Yates, R., Ribeiro-Neto, B., Modern Information Retrieval, Addison-Wesley, 1999.Google Scholar
  2. 2.
    Bechhofer, S., Van Harmelen, F., Hendler, J. A., Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F., Stein, L. A., OWL web ontology language reference, World Wide Web Consortium, Recommendation REC-owl-ref-20040210 (Feb. 2004).Google Scholar
  3. 3.
    Belhajjame, K., Embury, S. M., Paton, N. W., Stevens, R., Goble, C. A., “Automatic annotation of Web Services based on workflow definitions,” ACM Transaction on the Web, 2, 2, pp. 1–34, 2008.CrossRefGoogle Scholar
  4. 4.
    Bell, D., De Cesare, S., Iacovelli, N., Lycett, M., Merico, A., “A framework for deriving Semantic Web Services,” Information Systems Frontiers, 9, 1, pp. 69–84, 2007.CrossRefGoogle Scholar
  5. 5.
    Blake, M. B., Nowlan, M. F., “Taming Web Services from the wild,” IEEE Internet Computing, 12, 5, pp. 62–69, 2008.CrossRefGoogle Scholar
  6. 6.
    Brickley, D., Guha, R. V., RDF Vocabulary Description Language 1.0: RDF Schema, World Wide Web Consortium Recommendation (Feb. 2004).Google Scholar
  7. 7.
    Burstein, M., Bussler, C., Zaremba, M., Finin, T., Huhns, M. N., Paolucci, M., Sheth, A. P., Williams, S., “A Semantic Web Services architecture,” IEEE Internet Computing, 9, 5, pp. 72–81, 2005.CrossRefGoogle Scholar
  8. 8.
    Crasso, M., Zunino, A., Campo, M., “AWSC: An approach to Web Service classification based on machine learning techniques,” Inteligencia Artificial: Revista Iberoamericana de IA, 37, 12, pp. 25–36, 2008.Google Scholar
  9. 9.
    Crasso, M., Zunino, A., Campo, M., “Easy Web Service discovery: a Query-by-Example approach,” Science of Computer Programming, 71, 2, pp. 144–164, 2008.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Crasso, M., Zunino, A., Campo, M., “Query by example for Web Services, in: SAC '08: Proc. of the 2008 ACM symposium on Applied computing, ACM, New York, NY, USA, 2008.Google Scholar
  11. 11.
    Cristianini, N., Shawe-Taylor, J., An introduction to support Vector Machines and other kernel-based learning methods, Cambridge University Press, New York, NY, USA, 2000.Google Scholar
  12. 12.
    Daga, A., De Cesare, S., Lycett, M., Partridge, C., “An ontological approach for recovering legacy business content,” in HICSS '05: Proc. of the 38th Annual Hawaii International Conference on System Sciences, IEEE Computer Society, Washington, DC, USA, 2005.Google Scholar
  13. 13.
    Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A., “Learning to match ontologies on the Semantic Web,” The VLDB Journal, 12, 4, pp. 303–319, 2003.CrossRefGoogle Scholar
  14. 14.
    Dong, X., Halevy, A. Y., Madhavan, J., Nemes, E., Zhang, J., “Similarity search for Web Services,” in (e)Proc. of the Thirtieth International Conference on Very Large Data Bases, Morgan Kaufmann, Toronto, Canada, 2004.Google Scholar
  15. 15.
    Duo, Z., Zi, L., Bin, X., “Web service annotation using ontology mapping,” in Service-Oriented System Engineering, 2005 (SOSE 2005), IEEE International Workshop, 2005.Google Scholar
  16. 16.
    Ehrig, M., Ontology Alignment: Bridging the Semantic Gap, Semantic Web and Beyond, Springer, 2006.Google Scholar
  17. 17.
    Ehrig, M., Staab, S., “QOM - Quick Ontology Mapping,” in International Semantic Web Conference, LNCS 3298, Springer, 2004.Google Scholar
  18. 18.
    Ehrig, M., Sure, Y., “FOAM - framework for ontology alignment and mapping - results of the ontology alignment evaluation initiative,” in Integrating Ontologies, CEUR Workshop Proceedings, 156, CEUR-WS.org, 2005.Google Scholar
  19. 19.
    Erickson, J., Siau, K., “Web Service, Service-Oriented Computing, and Service-Oriented Architecture: Separating hype from reality,” Journal of Database Management, 19, 3, pp. 42–54, 2008.Google Scholar
  20. 20.
    Fallside, D. C., Walmsley, P., “XML schema part 0: Primer second edition,” W3C recommendation, W3C, Oct. 2004.Google Scholar
  21. 21.
    Ferdinand, M., Zirpins, C., Trastour, D., “Lifting XML schema to OWL,” in: ICWE, LNCS 3140, Springer, 2004.Google Scholar
  22. 22.
    Foster, I., Kesselman, K., The Grid 2: Blueprint for a New Computing Infrastructure Second Edition (The Elsevier Series in Grid Computing), Morgan Kaufman, 2004.Google Scholar
  23. 23.
    Garofalakis, J. D., Panagis, Y., Sakkopoulos, E., Tsakalidis, A. K., “Contemporary Web Service Discovery Mechanisms,” Journal of Web Engineering, 5, 3, pp. 265–290, 2006.Google Scholar
  24. 24.
    Gomez-Perez, A., Corcho-Garcia, O., Fernandez-Lopez, M., Ontological Engineering, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.Google Scholar
  25. 25.
    Hepp, M., “Semantic Web and semantic Web services: father and son or indivisible twins?,” IEEE Internet Computing, 10, 2, pp. 85–88, 2006.CrossRefGoogle Scholar
  26. 26.
    Heß, A., Johnston, E., Kushmerick, N., “ASSAM: A tool for semi-automatically annotating semantic Web Services,” in International SemanticWeb Conference, LNCS 3298, Springer, Hiroshima, Japan, 2004.Google Scholar
  27. 27.
    Heß, A., Kushmerick, N., “Learning to attach semantic metadata to Web Services,” in International Semantic Web Conference, LNCS 2870, Springer, 2003.Google Scholar
  28. 28.
    Iannone, L., Palmisano, I., Fanizzi, N., “An algorithm based on counterfactuals for concept learning in the Semantic Web,” Applied Intelligence, 26, 2, pp. 139–159, 2007.CrossRefGoogle Scholar
  29. 29.
    Kay, M., XSL transformations (XSLT) version 2.0, Candidate recommendation, W3C, Jan. 2007.Google Scholar
  30. 30.
    Korfhage, R. R., Information Storage and Retrieval, John Wiley & Sons, 1997.Google Scholar
  31. 31.
    Lee, D. L., Chuang, H., Seamons, K. E., “Document ranking and the vector-space model,” IEEE Software, 14, 2, pp. 67–75, 1997.Google Scholar
  32. 32.
    Lerman, K., Plangprasopchok, A., Knoblock, C. A., “Automatically labeling the inputs and outputs of Web Services,” in AAAI, AAAI Press, Boston, MA, USA, 2006.Google Scholar
  33. 33.
    Lewis, D. D., “Naive (Bayes) at forty: The independence assumption in information retrieval,” in 10th European Conference on Machine Learning, LNCS 1398, Springer, Chemnitz, Germany, 1998.Google Scholar
  34. 34.
    Manola, F., Miller, E., RDF primer, W3C recommendation, W3C (Feb. 2004).Google Scholar
  35. 35.
    Martin, D., Burstein, M., Mcdermott, D., Mcilraith, S., Paolucci, M., Sycara, K., Mcguinness, D. L., Sirin, E., Srinivasan, N., “Bringing semantics to Web Services with OWL-S,” World Wide Web, 10, 3, pp. 243–277, 2007.CrossRefGoogle Scholar
  36. 36.
    Maruyama, H., “New trends in e-business: From B2B to Web Services,” New Generation Computing, 20, 1, pp. 125–139, 2002.CrossRefGoogle Scholar
  37. 37.
    Mateos, C., Crasso, M., Zunino, A., Campo, M., “Supporting ontology-based semantic matching of Web Services in Movilog,” in IBERAMIA-SBIA, LNCS 4140, Springer, 2006.Google Scholar
  38. 38.
    McCool, R., “Rethinking the semantic Web. part I,” IEEE Internet Computing, 9, 6, pp. 86–87, 2005.Google Scholar
  39. 39.
    McCool, R., “Rethinking the SemanticWeb, part II,” IEEE Internet Computing, 10, 1, pp. 93–95, 2006.Google Scholar
  40. 40.
    Mizoguchi, R., “Tutorial on ontological engineering part 2: Ontology development, tools and languages,” New Generation Computing, 22, 1, pp. 61–96, 2004.MATHCrossRefGoogle Scholar
  41. 41.
    Noy, N. F., Musen, M., “PROMPT: Algorithm and tool for automated ontology merging and alignment,” in The Twelfth Conference on Innovative Applications of Artificial Intelligence, Menlo Park, CA, 2000.Google Scholar
  42. 42.
    Oldham, N., Thomas, C., Sheth, A. P., Verma, K., “METEOR-S Web Service Annotation Framework with Machine Learning Classification,” in SWSWPC, LNCS 3387, Springer, 2004.Google Scholar
  43. 43.
    Paar, A., Reuter, J., Soldatos, J., Stamatis, K., Polymenakos, L., “A formally specified ontology management API as a registry for ubiquitous computing systems,” Applied Intelligence, 30, 1, pp. 37–46, 2009.CrossRefGoogle Scholar
  44. 44.
    Pan, J. Z., Horrocks, I., “Rdfs(fa): Connecting RDF(S) and OWL DL,” IEEE Transactions on Knowledge and Data Engineering, 19, 2, pp. 192–206, 2007.Google Scholar
  45. 45.
    Patil, A. A., Oundhakar, S. A., Sheth, A. P., Verma, K., “METEOR-SWeb Service annotation framework,” in: WWW '04: Proc. of the 13th international conference on World Wide Web, ACM Press, New York, NY, USA, 2004.Google Scholar
  46. 46.
    Reif, G., Gall, H., Jazayeri, M., “WEESA: Web engineering for semantic web applications,” in The 14th International World Wide Web Conference, ACM Press, 2005.Google Scholar
  47. 47.
    Resnik, P., “Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language,” Journal of Artificial Intelligence Research, 11, pp. 95–130, 1999.Google Scholar
  48. 48.
    Rocchio, J. J., Relevance feedback in information retrieval, in: The Smart retrieval system- experiments in automatic document processing, Prentice-Hall, Englewood Cliffs, NJ, 1971.Google Scholar
  49. 49.
    Sabou, M., Pan, J., “Towards semantically enhanced Web Service repositories,” Web Semantics: Science, Services and Agents on the World Wide Web, 5, 2, pp. 142–150, 2007.CrossRefGoogle Scholar
  50. 50.
    Sabou, M., Wroe, C., Goble, C. A., Stuckenschmidt, H., “Learning domain ontologies for Semantic Web Service descriptions,” Journal of Web Semantics, 3, 4, pp. 340–365, 2005.Google Scholar
  51. 51.
    Salton, G., Wong, A., Yang, C. S., “A vector space model for automatic indexing,” Communications of the ACM, 18, 11, pp. 613–620, 1975.Google Scholar
  52. 52.
    Shamsfard, M., Barforoush, A. A., “Learning ontologies from natural language texts” International Journal of Human-Computer Studies, 60, pp. 17–63, 2004.CrossRefGoogle Scholar
  53. 53.
    Sivashanmugam, K., Verma, K., Sheth, A. P., Miller, J. A., “Adding semantics to Web Services standards,” in The 2003 International Conference on Web Services, CSREA Press, Las Vegas, NV, USA, 2003.Google Scholar
  54. 54.
    Van Rijsbergen, C. J., Information Retrieval, 2nd ed., Butterworths, London, 1979. Google Scholar
  55. 55.
    Wang, J. Z., Ali, F., “An Efficient Ontology Comparison Tool for Semantic Web Applications,” in Web Intelligence, IEEE Computer Society, 2005.Google Scholar
  56. 56.
    Witte, R., Li, Q., Zhang, Y., Rilling, J., “Text mining and software engineering: An integrated source code and document analysis approach,”, IET Software Journal, 2 pp. 3–16, 2008.Google Scholar
  57. 57.
    Witten, I. H., Frank, E., “Data Mining: Practical Machine Learning Tools and Techniques,” Morgan Kaufmann Series in Data Management Systems, 2nd ed., Morgan Kaufmann, 2005.Google Scholar

Copyright information

© Ohmsha and Springer Japan jointly hold copyright of the journal. 2010

Authors and Affiliations

  1. 1.ISISTAN Research Institute. UNICEN University. Campus Universitario, Tandil (B7001BBO) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations