New Generation Computing

, Volume 28, Issue 1, pp 41–71 | Cite as

GeoMergeP: Geographic Information Integration through Enriched Ontology Matching

  • Agustina Buccella
  • Alejandra Cechich
  • Domenico Gendarmi
  • Filippo Lanubile
  • Giovanni Semeraro
  • Attilio Colagrossi
Article

Abstract

The combination of the use of advanced Information and Communication Technology, especially the Internet, to enable new ways of working, with the enhanced provision of information and interactive services accessible over different channels, is the foundation of a new family of information systems. Particularly, this information explosion on the Web, which threatens our ability to manage information, has affected the geographic information systems. Interoperability is a key word here, since it means, an increasing level of cooperation between information sources on national, regional and local levels; and requires new methods to develop interoperable geographic systems. In this paper, an ontology-driven system (GeoMergeP) is described for the semantic integration of geographic information sources. Particularly, we focus on how ontology matching can be enriched through the use of standards for implementing a semi-automatic matching approach. Then, the requirements and steps of the system are illustrated on the ISPRA (Italian Institute for Environmental Protection and Research) case study. Our preliminary results show that ontology matching can be improved; helping interoperating systems increase reliability of exchanged and shared information.

Keywords:

Geographic Information Systems Ontologies Semantic Enrichment Mapping Discovery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geographic information. Spatial Schema. International standard 19107, ISO/IEC, 2003.Google Scholar
  2. 2.
    Geographic information. Rules for Application Schema. Draft International Standard 19109, ISO/IEC, 2005.Google Scholar
  3. 3.
    Aerts, K., Maesen, K. and Van Rompaey, A., “A practical example of semantic interoperability of large-scale topographic databases using semantic web technologies” in Proc. of the AGILE'06: 9th Conference on Geographic Information Science (Visegrád, Hungary, 2006., pp. 35-42.Google Scholar
  4. 4.
    Baader, F., Calvanese, D., McGuiness, D., Nardi, D. and Patel-Schneider, P., eds., The Description Logic Handbook - Theory, Implementation and Applications, Cambridge University Press, United Kingdom, 2003.Google Scholar
  5. 5.
    Belussi, A., Negri, M. and Pelagatti, G., “An iso tc 211 conformant approach to model spatial integrity constraints in the conceptual design of geographical databases” in ER (Workshops), pp. 100-109, 2006.Google Scholar
  6. 6.
    Berardi, D., Calvanese, D. and De Giacomo, G., “Reasoning on uml class diagrams,” Artificial Intelligence, 168, 1, pp. 70-118, 2005.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Biron, P. and Malhotra, A., “Xml schema part 2: Datatypes. W3C Recommendation,” 2001. Available at http://www.w3.org/TR/xmlschema-2/.
  8. 8.
    Borges, K., Davis, C. and Laender, A., “Omt-g: An object-oriented data model for geographic applications,” Geoinformatica, 5, 3, pp. 221-260, 2001.MATHCrossRefGoogle Scholar
  9. 9.
    Buccella, A. and Cechich, A., “Towards integration of geographic information systems,” Electronic Notes in Theoretical Computer Science, 168, pp. 45-59, 2007.CrossRefGoogle Scholar
  10. 10.
    Buccella, A., Cechich, A. and Brisaboa, N. R., “A federated layer to integrate heterogeneous knowledge,” in VODCA'04 First International Workshop on Views on Designing Complex Architectures (Bertinoro, Italy, 2004), No. 142 in Electronic Notes in Theoretical Computer Science, Elsevier Science B.V, pp. 79-97.Google Scholar
  11. 11.
    Buccella, A., Cechich, A. and Fillotrani, P., “Ontology-driven geographic information integration: A survey of current approaches,” Computers & Geosciences, Special Issue on Geoscience Knowledge Representation in Cyberinfrastructure, 35, 4, pp. 710-723, 2009.Google Scholar
  12. 12.
    Buccella, A., Gendarmi, D., Lanubile, F., Semeraro, G., Cechich, A. and Colagrossi, A., “A layered ontology-based architecture for integrating geographic information,” in New Challenges in Applied Intelligence Technologies, vol. 134 of Studies in Computational Intelligence, Springer, pp. 135-144, 2008.Google Scholar
  13. 13.
    Buccella, A., Perez, L. and Cechich, A., “Geomergep: Supporting an ontological approach to geographic information integration,” in Proc. of the SCCC'08: 17th International Conference of the Chilean Computer Science Society, IEEE, pp. 52-61, 2008.Google Scholar
  14. 14.
    Calefato, F., Colagrossi, A., Gendarmi, D., Lanubile, F. and Semeraro, G., “An information broker for integrating heterogeneous hydrologic data sources: A web services approach,” in Research and Practical Issues of Enterprise Information System (A. Xu, L. Chaudhry and S. Guarino eds.), IFIP Series 205, Springer, pp. 41-50, 2006.Google Scholar
  15. 15.
    Chaves, M. S., Silva, M. J. and Martins, B., “A Geographic Knowledge Base for Semantic Web Applications,” in Proc. of the 20th Brazilian Symposium on Databases (Uberlândia, Minas Gerais, Brazil, October, March-July 2005), (C. A. Heuser ed.), pp. 40-54.Google Scholar
  16. 16.
    Consortium, O., Geography markup language. Available in http://www.opengis.net/gml. Last access in June, 2008.
  17. 17.
    Euzenat, J. and Shvaiko, P., Ontology Matching, Springer-Verlag, Heidelberg, Germany, 2007.Google Scholar
  18. 18.
    Fonseca, F., Ontology-driven Geographic Information Systems, Ph.D. Dissertation, University of Maine, Orono, ME, USA, 2001.Google Scholar
  19. 19.
    Fonseca, F., Davis, C. and Câmara, C., “Bridging ontologies and conceptual schema in geographical information integration,” Geoinformatica, 7, 4, pp. 307- 321, 2003.Google Scholar
  20. 20.
    Gendarmi, D., Lanubile, F., Lichelli, O., Semeraro, G. and Colagrossi, A., “Water protection information management by syntactic and semantic interoperability of heterogeneous repositories,” in Proc. of the ISESS’07: 12th International Symposium on Environmental Software Systems, 2007.Google Scholar
  21. 21.
    Gruber, T., “A translation approach to portable ontology specifications,” Knowledge Acquisition, 5, 2, pp. 199-220, 1993.CrossRefGoogle Scholar
  22. 22.
    Haarslev, V. and Möller, R., “Racer system description,” in Proc. of the IJCAR '01: 1st International Joint Conference on Automated Reasoning (London, UK, 2001), LNCS 2083, pp. 701-706.Google Scholar
  23. 23.
    Hakimpour, F., Using Ontologies to Resolve Semantic Heterogeneity for Integrating Spatial Database Schemata, Ph.D. Dissertation, Zurich University, Switzerland, 2003.Google Scholar
  24. 24.
    Hakimpour, F. and Geppert, A., “Global schema generation using formal ontologies,” in Proc. of the ER'02: 21st International Conference on Conceptual Modeling, LNCS 2503, pp. 307-321, 2002.Google Scholar
  25. 25.
    Hess, G. N. and Iochpe, C., “Ontology-driven resolution of semantic heterogeneities in gdb conceptual schemas,” in Proc. of the GEOINFO'04: VI Brazilian Symposium on GeoInformatics (Campos do Jordão, Brazil 2004), pp. 247- 263.Google Scholar
  26. 26.
    Horrocks, I., “The fact system,” in Proc. of the TABLEAUX'98: Automated Reasoning with Analytic Tableaux and Related Methods, LNCS 1397, Springer- Verlag, Berlin, pp. 307-312, 1998.Google Scholar
  27. 27.
    Jang, S. and Kim, T. J., “Modeling an interoperable multimodal travel guide system using the iso 19100 series of international standards” in Proc. of the GIS '06: 14th Annual ACM International Symposium on Advances in Geographic Information Systems (New York, NY, USA, 2006), ACM Press, pp. 115-122.Google Scholar
  28. 28.
    Janowicz, K., “Sim-dl: Towards a semantic similarity measurement theory for the description logic cnr in geographic information retrieval,” in OTM Workshops, 2, pp. 1681-1692, 2006.Google Scholar
  29. 29.
    Kalfoglou, Y. and Schorlemmer, M., “Ontology mapping: the state of the art,” The Knowledge Engineering Review, 18, 1, pp. 1-31, 2003..Google Scholar
  30. 30.
    Klein, M., “Combining and relating ontologies: an analysis of problems and solutions,” in Proc. of the IJCAI'01: 17th International Joint Conferences on Artificial Intelligence (Seattle, WA, USA, 2001), pp. 53-62.Google Scholar
  31. 31.
    Klien, E. and Lutz, M., “The role of spatial relations in automating the semantic annotation of geodata,” in Proc. of the COSIT'05: International Conference on Spatial Information Theory (Ellicottville, NY, USA, 2005), (A. Cohn and D. Mark, eds.), LNCS 3693, pp. 133-148.Google Scholar
  32. 32.
    Lemmens, R., “Semantic interoperability of distributed geo-services,” Ph.D. Thesis, Delft, Nederlandse Commissie voor Geodesie (NCG), Netherlands Geodetic Commission NCG, 2006.Google Scholar
  33. 33.
    Lorenz, B., Ohlbach, H. J. and Yang, L., “Ontology of transportation networks,” Tech. Rep. A1-D4, REWERSE, IST-2004-506779, 2005.Google Scholar
  34. 34.
    Lutz, C., Walther, D. and Wolter, F., “Conservative extensions in expressive description logics” in Proc. of the IJCAI '07: 20th International Joint Conference on Artificial Intelligence, pp. 453-458, 2007.Google Scholar
  35. 35.
    Maedche, A. and Staab, S., “Measuring similarity between ontologies,” in Proc. of the EKAW’02 13th International Conference on Knowledge Engineering and Knowledge Management. Ontologies and the Semantic Web (London, UK, 2002), Springer-Verlag, pp. 251-263.Google Scholar
  36. 36.
    McGuinness, D., Fikes, R., Rice, J. and Wilder, S., “An environment for merging and testing large ontologies,” in Proc. of the KR, pp. 483-493, 2000.Google Scholar
  37. 37.
    Noy, N. F. and Musen, M. A., “Prompt: Algorithm and tool for automated ontology merging and alignment” in Proc. of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence, AAAI Press/The MIT Press, pp. 450-455, 2000.Google Scholar
  38. 38.
    Parent, C., Spaccapietra, S. and Zimányi, E., “Spatio-temporal conceptual models: data structures + space + time” in Proc. of the GIS ’99: 7th ACM International Symposium on Advances in Geographic Information Systems (New York, NY, USA, 1999), ACM Press, pp. 26-33.Google Scholar
  39. 39.
    Quix, C., Ragia, L., Cai, L. and Gan, T., “Matching schemas for geographical information systems using semantic information,” in OTM Workshops 2, pp. 1566-1575, 2006.Google Scholar
  40. 40.
    Rodríguez, M. and Egenhofer, M., “Comparing geospatial entity classes: An asymmetric and context-dependent similarity measure,” International Journal of Geographical Information Science, 18, 3, pp. 229-256, 2004.Google Scholar
  41. 41.
    Schwering, A. and Raubal, M., “Spatial relations for semantic similarity measurement,” in Proc. of the ER'05: 24th International Conference on Conceptual Modeling, LNCS 3770, Springer Berlin/Heidelberg, pp. 259-269, 2005.Google Scholar
  42. 42.
    Sotnykova, A., Vangenot, C., Cullot, N., Bennacer, N. and Aufaure, M., “Semantic mappings in description logics for spatio-temporal database schema integration,” Journal on Data Semantics III, pp. 143-167, 2005.Google Scholar
  43. 43.
    Stoimenov, L., Stanimirovic, A. and Djordjevic-Kajan, S., “Discovering mappings between ontologies in semantic integration process,” in Proc. of the AGILE' 06: 9th Conference on Geographic Information Science (Visegrád, Hungary, 2006), pp. 213-219.Google Scholar
  44. 44.
    Su, X., Hakkarainen, S. and Brasethvik, T., “Semantic enrichment for improving systems interoperability,” in Proc. of the SAC '04: ACM Symposium on Applied Computing (New York, NY, USA, 2004), ACM, pp. 1634-1641.Google Scholar
  45. 45.
    Tun, N. N., “Semantic enrichment in ontologies for matching” in Proc. of the AOW '06: Second Australasian Workshop on Advances in Ontologies (Darlinghurst, Australia, 2006), Australian Computer Society, Inc., pp. 91-100.Google Scholar
  46. 46.
    Visser, P., Jones, D., Bench-Capon, T. and Shave, M., “An analysis of ontology mismatches; heterogeneity versus interoperability,” in Proc. of the AAAI'97: Spring Symposium on Ontological Engineering, pp. 164-172, 1997.Google Scholar
  47. 47.
    Visser, U., Intelligent Information Integration for the Semantic Web, LNCS 3159, Springer, Heidelberg, Germany, 2004.Google Scholar
  48. 48.
    Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., and Hbner, S., “Ontology-based integration of information – a survey of existing approaches,” in Proc. of the IJCAI'01: 17th International Joint Conferences on Artificial Intelligence (Seattle, WA, 2001), pp. 108-117.Google Scholar

Copyright information

© Ohmsha and Springer Japan jointly hold copyright of the journal. 2010

Authors and Affiliations

  • Agustina Buccella
    • 1
  • Alejandra Cechich
    • 2
  • Domenico Gendarmi
    • 2
  • Filippo Lanubile
    • 2
  • Giovanni Semeraro
    • 2
  • Attilio Colagrossi
    • 3
  1. 1.GIISCO Research Group Departamento de Ciencias de la ComputaciónUniversidad Nacional del ComahueNeuquenArgentina
  2. 2.Dipartimento di InformaticaUniversity of BariBariItaly
  3. 3.ISPRA-Istituto Superiore per la Protezione e la Ricerca AmbientaleRomeItaly

Personalised recommendations