Advertisement

Investigation of flame retarded polypropylene by high-speed planar laser-induced fluorescence of OH radicals combined with a thermal decomposition analysis

  • 37 Accesses

Abstract

The combustion of micrometer-sized polypropylene (PP) particles is analyzed in situ using a combination of high-speed planar laser-induced fluorescence of the OH radical (OH-PLIF) and a thermal decomposition analysis. The gas phase is investigated by multiple analytical techniques to gain comprehensive knowledge on the decomposition products of flame retardants and their effect on the combustion process. Neat PP is compared with a formulation consisting of 10 wt% of a phosphorus-containing flame retardant (pentaerythritol spirobis(methylphosphonate), PSMP) which is known to provide gas phase activity. The decomposition of the neat flame retardant, PP and the flame retardant formulation is investigated using a simultaneous analysis (STA) consisting of a thermal gravimetric analysis and a differential thermal analysis device which is coupled to Fourier-transform infrared spectroscopy and mass spectrometry devices. By this, the release of decomposition products of the flame retardant additive can be determined. The excitation of OH radicals is used to temporally track the diffusion flame surrounding the particles during combustion in a laminar flow reactor. The radial distance to the peak reactivity zone of flame retardant containing particles increased by about 70 µm compared with neat PP particles. Tracking the peak OH signal in the diffusion flame, during ignition and the early phase of combustion, a decrease in the peak intensity is observed for flame retardant polymer particles. Additionally, cone calorimeter tests are used to evaluate the combustion behavior as a standard test in flame retardancy.

Graphic abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Bart JCJ (2006) Plastics additives: advanced industrial analysis. IOS Press, Amsterdam

  2. Beach MW, Vozar SE, Filipi SZ, Shmakov AG, Shvartsberg VM, Korobeinichev OP, Morgan TA, Hu TI, Sick V (2009) Screening approaches for gas-phase activity of flame retardants. Proc Combust Inst 32:2625–2632

  3. Goedderz D, Weber L, Markert D, Schießer A, Fasel C, Riedel R, Altstädt V, Bethke C, Fuhr O, Puchtler F (2020) Flame retardant polyester by combination of organophosphorus compounds and an NOR radical forming agent. J Appl Polym Sci 137:47876

  4. Green J (1996) Mechanisms for flame retardancy and smoke suppression—a review. J Fire Flammabil 14:426–442

  5. Hartlieb AT, Atakan B, Kohse-Höinghaus K (2000) Effects of a sampling quartz nozzle on the flame structure of a fuel-rich low-pressure propene flame. Combust Flame 121:610–624

  6. Hastie J (1973) Molecular basis of flame inhibition. J Res 77:733–754

  7. Klinkowski C, Burk B, Bärmann F, Döring M (2015) Moderne Flammschutzmittel für Kunststoffe. Chem unserer Zeit 49:96–105

  8. Kohse-Höinghaus K, Schocker A, Kasper T, Kamphus M, Brockhinke A (2005) Combination of laser-and mass-spectroscopic techniques for the investigation of fuel-rich flames. Zeitschrift für Physikalische Chemie 219:583–599

  9. Korobeinichev O, Paletsky A, Kuibida L, Gonchikzhapov M, Shundrina I (2013) Reduction of flammability of ultrahigh-molecular-weight polyethylene by using triphenyl phosphate additives. Proc Combust Inst 34:2699–2706

  10. Köser J, Becker LG, Vorobiev N, Schiemann M, Scherer V, Böhm B, Dreizler A (2015) Characterization of single coal particle combustion within oxygen-enriched environments using high-speed OH-PLIF. Appl Phys B 121:459–464

  11. Köser J, Becker LG, Goßmann A-K, Böhm B, Dreizler A (2017) Investigation of ignition and volatile combustion of single coal particles within oxygen-enriched atmospheres using high-speed OH-PLIF. Proc Combust Inst 36:2103–2111

  12. Köser J, Li T, Vorobiev N, Dreizler A, Schiemann M, Böhm B (2019) Multi-parameter diagnostics for high-resolution in-situ measurements of single coal particle combustion. Proc Combust Inst 37:2893–2900

  13. Lau S, Gonchikzhapov M, Paletsky A, Shmakov A, Korobeinichev O, Kasper T, Atakan B (2019) Wirkungsweise von Aluminiumdiethylphosphinat als Flammenhemmer für ultrahochmolekulares Polyethylen, vol 29. Deutscher Flammentag, Bochum

  14. Lewin M, Weil E (2001) Mechanisms and modes of action in flame retardancy of polymers. In: Horrocks A, Price D (eds) Fire retardant materials, 1st edn. Woodhead Publishing, Cambridge, pp 31–68

  15. Liang S, Hemberger P, Neisius NM, Bodi A, Grützmacher H, Levalois‐Grützmacher J, Gaan S (2015) Elucidating the thermal decomposition of dimethyl methylphosphonate by vacuum ultraviolet (VUV) photoionization: pathways to the PO radical, a key species in flame‐retardant mechanisms. Chem Eur J 21:1073–1080

  16. MacDonald MA, Jayaweera T, Fisher EM, Gouldin F (1999) Inhibition of nonpremixed flames by phosphorus-containing compounds. Combust Flame 116:166–176

  17. MacDonald MA, Gouldin FC, Fisher EM (2001) Temperature dependence of phosphorus-based flame inhibition. Combust Flame 124:668–683

  18. Osawa Z, Kuroda H, Kobayashi Y (1984) Luminescence emission of isotactic polypropylene. J Appl Polym Sci 29:2843–2849

  19. Pfaendner R, Metzsch-Zilligen E, Stec M (2014) Verwendung von organischen Oxyimiden als Flammschutzmittel für Kunststoffe sowie flammgeschützte Kunststoffzusammensetzung und hieraus hergestellte Formteile. WO 2014154636 A1

  20. Saeidian H, Babri M, Mirjafary Z, Naseri MT, Sarabadani M, Ashrafi D, Faraz SSM (2014) Fragmentation mechanisms in mass spectrometry of Chemical Weapons Convention related spiro alkylphosphonates and alkyldioxaphosphinane oxides. Int J Mass Spectrom 369:59–70

  21. Salmeia KA, Fage J, Liang S, Gaan S (2015) An overview of mode of action and analytical methods for evaluation of gas phase activities of flame retardants. Polymers 7:504–526

  22. Salmeia KA, Gooneie A, Simonetti P, Nazir R, Kaiser J-P, Rippl A, Hirsch C, Lehner S, Rupper P, Hufenus R, Gaan S (2018) Comprehensive study on flame retardant polyesters from phosphorus additives. Polym Degrad Stab 155:22–34

  23. Schartel B (2010) Phosphorus-based flame retardancy mechanisms—old hat or a starting point for future development? Materials 3:4710–4745

  24. Shmakov A, Shvartsberg V, Korobeinichev O, Beach M, Hu T, Morgan T (2007) Structure of a freely propagating rich CH4/air flame containing triphenylphosphine oxide and hexabromocyclododecane. Combust Flame 149:384–391

  25. Siow JE, Laurendeau NM (2004) Flame inhibition activity of phosphorus-containing compounds using laser-induced fluorescence measurements of hydroxyl. Combust Flame 136:16–24

  26. Vora N, Laurendeau NM (2001) Analysis of CF3Br flame suppression activity using quantitative laser-induced fluorescence measurements of the hydroxyl radical. Combust Sci Technol 166:15–39

  27. Vora N, Siow JE, Laurendeau NM (2001) Chemical scavenging activity of gaseous suppressants by using laser-induced fluorescence measurements of hydroxyl. Combust Flame 126:1393–1401

  28. Wagner S (2012) Novel phosphorus based flame retardants for engineering plastics and epoxies. Dissertation, Ruprecht-Karls-Universität Heidelberg

  29. Wagner J, Deglmann P, Fuchs S, Ciesielski M, Fleckenstein CA, Döring M (2016) A flame retardant synergism of organic disulfides and phosphorous compounds. Polym Degrad Stab 129:63–76

  30. Wang B, Xu F, Zong P, Zhang J, Tian Y, Qiao Y (2019) Effects of heating rate on fast pyrolysis behavior and product distribution of Jerusalem artichoke stalk by using TG-FTIR and Py-GC/MS. Renew Energy 132:486–496

Download references

Acknowledgements

The authors of Fraunhofer LBF/TU Darmstadt would like to acknowledge for financial support from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG, Projektnummer 278300368). The authors of RSM/TU Darmstadt would like to thank the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG, Projektnummer 215035359—TRR 129) for its support through CRC/Transregio 129 “Oxy-flame: Development of methods and models to describe solid fuel reactions within an oxy-fuel atmosphere.” A. Dreizler is grateful for support by the Gottfried Wilhelm Leibniz program of the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG).

Author information

DTA–MS–FTIR analysis: DG, CF and RR; TGA analysis: DG; OH-PLIF analysis: CG, TL, JK, AD, BB; cone calorimeter tests: FP, JB and CB.

Correspondence to Christopher Geschwindner.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 730 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geschwindner, C., Goedderz, D., Li, T. et al. Investigation of flame retarded polypropylene by high-speed planar laser-induced fluorescence of OH radicals combined with a thermal decomposition analysis. Exp Fluids 61, 30 (2020) doi:10.1007/s00348-019-2864-5

Download citation