Experiments in Fluids

, 61:14 | Cite as

An image feature consolidation technique (IFCT) to capture multi-range droplet size distributions in atomizing liquid sheets

  • Ali Asgarian
  • Ziwei Yang
  • Ziqi Tang
  • Markus Bussmann
  • Kinnor ChattopadhyayEmail author
Research Article


Atomization of an attenuating liquid sheet beyond the breakup point is visualized by shadow imaging. Of interest is the transitional region where the disintegration of the liquid sheet into a spray occurs. This region is characterized by the coexistence of fine droplets and large unbroken ligaments. The large range of size of the droplets, relative to the unbroken ligaments, exacerbates the out-of-focus and resolution issues which are inherent in the optical imaging of sprays. To rectify these, two shadowgrams with different depths of field (DOF) and resolutions are obtained at each area of interest within the spray, using two different optical setups: finer droplets are observed in the shadowgram with shallow DOF and high resolution; and larger particles, mostly unbroken ligaments, are clearly captured in the shadowgram with deep DOF. Then, an image analysis technique is used to extract the spray features visible in each shadowgram, and the data obtained from the two shadowgrams are consolidated into one histogram representing the nearly complete range of droplet sizes within the spray. This Image Feature Consolidation Technique (IFCT) and the resulting droplet size distribution are found to be useful for applications involving developing sprays.

Graphic abstract



The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC) and UofT Dean’s Catalyst Professorship for funding this research.


  1. Amighi A, Ashgriz N (2019) Global droplet size in liquid jet in a high-temperature and high-pressure crossflow. AIAA J 57(3):1260–1274CrossRefGoogle Scholar
  2. Asgarian A, Alicandri R, Bussmann M, Chattopadhyay K (2018a) Initial development of an industrial tool to model water atomization of metals. In: Proceedings of WorldPM2018, Beijing, China, 16–20 Sep 2018.
  3. Asgarian A, Wu C, Li D, Bussmann M, Chattopadhyay K, Lemieux S, Girard B, Lavallee F, Paserin V (2018b) Experimental and computational analysis of a water spray; application to molten metal atomization. In: Advances in powder metallurgy and particulate materials (Proceedings of the 2018 International Conference on Powder Metallurgy & Particulate Materials), pp. 126–137, San Antonio, TX, USA, 17–20 Jun 2018.
  4. Bendig L, Raudenský M, Horský J (2001) Descaling with high pressure nozzles. In: Presented at ILASS-Europe conference, Zurich, Switzerland, 2–6 Sep 2001.
  5. Blaisot JB, Ledoux M (1998) Simultaneous measurement of diameter and position of spherical particles in a spray by an original imaging method. Appl Opt 37(22):5137CrossRefGoogle Scholar
  6. Blaisot JB, Yon J (2005) Droplet size and morphology characterization for dense sprays by image processing: application to the diesel spray. Exp Fluids 39(6):977–994CrossRefGoogle Scholar
  7. Castrejón-García R, Castrejón-Pita JR, Martin GD, Hutchings IM (2011) The shadowgraph imaging technique and its modern application to fluid jets and drops. Revista Mexicana de Física 57(3):266–275Google Scholar
  8. Chin LP, LaRose PG, Tankin RS, Jackson T, Stutrud J, Switzer G (1991) Droplet distributions from the breakup of a cylindrical liquid jet. Phys Fluids A 3(8):1897–1906CrossRefGoogle Scholar
  9. Corcoran TE, Hitron R, Humphrey W, Chigier N (2000) Optical measurement of nebulizer sprays: a quantitative comparison of diffraction, phase doppler interferometry, and time of flight techniques. J Aerosol Sci 31(1):35–50CrossRefGoogle Scholar
  10. Evers LW (1994) Characterization of the transient spray from a high pressure swirl injector, SAE Technical Paper, No. 940188Google Scholar
  11. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874MathSciNetCrossRefGoogle Scholar
  12. Ferreira T, Rasband W (2012) ImageJ User Guide - IJ 1.46r.
  13. Fdida N, Blaisot JB, Floch A, Dechaume D (2008) Drop size measurement techniques applied to gasoline sprays. In: ILASS-EuropeGoogle Scholar
  14. Fritz BK, Hoffmann WC (2016) Measuring spray droplet size from agricultural nozzles using laser diffraction. J Vis Exp 115:1–7Google Scholar
  15. Grandzol RJ, Tallmadge JA (1973) Water jet atomization of molten steel. AIChE J 19(6):1149–1158CrossRefGoogle Scholar
  16. Greenleaf AR (1950) Photographic optics. The MacMillan Company, New York, pp 25–27Google Scholar
  17. Hardalupas Y, Taylor AMKP, Whitelaw JH (1992) Characteristics of the spray from a diesel injector. Int J Multiph Flow 18(2):159–179CrossRefGoogle Scholar
  18. Kashani A, Parizi H, Mertins KH (2018) Multi-step spray modelling of a flat fan atomizer. Comput Electron Agric 144:58–70CrossRefGoogle Scholar
  19. Malot H, Blaisot JB (2000) Droplet size distribution and sphericity measurements of low-density sprays through image analysis. Part Part Syst Charact 17(4):146–158CrossRefGoogle Scholar
  20. Minov SV, Cointault F, Vangeyte J, Pieters JG, Nuyttens D (2016) Spray droplet characterization from a single nozzle by high speed image analysis using an in-focus droplet criterion. Sensors 16(2):218–237CrossRefGoogle Scholar
  21. Reitz RD (1987) Modeling atomization processes in high-pressure vaporizing sprays. At Spray Technol 3(4):309–337Google Scholar
  22. Saumweber C, Friedman JA, Renksizbulut M (1997) Simultaneous droplet size and gas-phase turbulence measurements in a spray flow using phase-doppler interferometry. Part Part Syst Charact 14(5):233–242CrossRefGoogle Scholar
  23. Sobel I, Feldman G (1968) A 3x3 isotropic gradient operator for image processing, presented at a talk at the Stanford Artificial Project. In: Duda R, Hart P (eds) Pattern Classification and Scene Analysis. Wiley, New York, pp 271–272Google Scholar
  24. Taylor J (1997) An Introduction to error analysis; the study of uncertainties in physical measurements, 2nd edn. University Science Books, SausalitoGoogle Scholar
  25. Tiley JB, Munther PA (2009) Descaling of hot-rolled strip, flat-rolled steel processes: advanced technologies. CRC Press, Boca Raton, pp 91–96CrossRefGoogle Scholar
  26. Triballier K, Dumouchel C, Cousin J (2003) A technical study on the Spraytec performances: influence of multiple light scattering and multi-modal drop-size distribution measurements. Exp Fluids 35(4):347–356CrossRefGoogle Scholar
  27. Tuck CR, Butler Ellis MC, Miller PCH (1997) Techniques for measurement of droplet size and velocity distributions in agricultural sprays. Crop Prot 16(7):619–628CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Process Metallurgy Research Lab, Department of Materials Science and EngineeringUniversity of TorontoTorontoCanada
  2. 2.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations