Experiments in Fluids

, 60:11 | Cite as

Experimental investigation of flow development and coherent structures in normal and oblique impinging slot jets

  • Xueqing Zhang
  • Serhiy Yarusevych
  • Sean D. PetersonEmail author
Research Article


The development of normal and oblique impinging slot jets is investigated experimentally using planar particle image velocimetry. The study is performed for two jet Reynolds numbers, \({Re} = 3000\) and 6000, and four jet orientation angles relative to the wall (\(\theta = 90^\circ , 60^\circ , 45^\circ , 30^\circ\)), with the nozzle-to-plate spacing fixed at four slot widths. Within the range of impingement angles considered, the flow is characterized by a stagnation region, followed by a region of flow reorientation into a wall jet. The development of the wall jet downstream of the impingement region is shown to be closely related to the evolution of coherent structures forming due to the Kelvin–Helmholtz instability. For normal jet impingement at \({Re} = 3000\), these shear layer rollers remain coherent past the reorientation region and induce the formation and shedding of wall-bounded vorticity; the shed vorticity pairs with the primary shear layer vortices and ejects from the wall, resulting in deflection of the mean wall jet from the surface. Both the primary and the induced structures break down farther downstream, marking final stages of transition to turbulence. For \({Re} = 6000\), breakdown of the shear layer vortices occurs in the reorientation region, leading to earlier transition into a turbulent wall jet. Consequently, wall-bounded vorticity roll-up and ejection are less significant, and the deflection of the wall jet away from the surface is reduced. The analysis presented quantitatively relates the development of coherent structures to salient changes in the time-averaged flow statistics.



The authors gratefully acknowledge the contribution of the Natural Sciences and Engineering Research Council (NSERC), Ontario Centres of Excellence (OCE), and Suncor Energy to the funding of this research.


  1. Ahmed ZU, Al-Abdeli YM, Matthews MT (2015) The effect of inflow conditions on the development of non-swirling versus swirling impinging turbulent jets. Comput Fluids 118:255–273CrossRefGoogle Scholar
  2. Angioletti M, Di Tommaso R, Nino E, Ruocco G (2003) Simultaneous visualization of flow field and evaluation of local heat transfer by transitional impinging jets. Int J Heat Mass Transf 46:1703–1713CrossRefGoogle Scholar
  3. Astarita T, Cardone G (2008) Convective heat transfer on a rotating disk with a centred impinging round jet. Int J Heat Mass Transf 51(7–8):1562–1572CrossRefGoogle Scholar
  4. Bakke P (1957) An experimental investigation of a wall jet. J Fluid Mech 2:467–472CrossRefGoogle Scholar
  5. Barenblatt G, Chorin A, Prostokishin V (2005) The turbulent wall jet: A triple-layered structure and incomplete similarity. Proc Natl Acad Sci USA 102:8850–8853CrossRefGoogle Scholar
  6. Beltaos S (1976) Oblique impingement of plane turbulent jets. J Hydraul Div 102:1177–1192Google Scholar
  7. Bradshaw B, Gee M (1962) Turbulent wall jets with and without an external stream. HM Stationery OfficeGoogle Scholar
  8. Carlomagno GM, Ianiro A (2014) Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance: a review. Exp Therm Fluid Sci 58:15–35CrossRefGoogle Scholar
  9. Cartwright W, Russell P (1967) Paper 32: characteristics of a turbulent slot jet impinging on a plane surface. In: Proceedings of the institution of mechanical engineers, conference proceedings, vol 182. SAGE Publications Sage UK: London, pp 309–319Google Scholar
  10. Chin DT, Agarwal M (1991) Mass transfer from an oblique impinging slot jet. J Electrochem Soc 138:2643–2650CrossRefGoogle Scholar
  11. Cornaro C, Fleischer A, Goldstein R (1999) Flow visualization of a round jet impinging on cylindrical surfaces. Exp Therm Fluid Sci 20:66–78CrossRefGoogle Scholar
  12. Didden N, Ho CM (1985) Unsteady separation in a boundary layer produced by an impinging jet. J Fluid Mech 160:235–256CrossRefGoogle Scholar
  13. Fernholz H (1964) Zur umlenkung von freistrahlen an gekrummten wanden. Übersicht uber den Stand der Technik, Jahrbuch, p 149Google Scholar
  14. Fox M, Kurosaka M, Hedges L, Hirano K (1993) The influence of vortical structures on the thermal fields of jets. J Fluid Mech 255:447–472CrossRefGoogle Scholar
  15. Gao N, Sun H, Ewing D (2003) Heat transfer to impinging round jets with triangular tabs. Int J Heat Mass Transf 46:2557–2569CrossRefGoogle Scholar
  16. Gardon R, Akfirat JC (1965) The role of turbulence in determining the heat-transfer characteristics of impinging jets. Int J Heat Mass Transf 8(10):1261–1272CrossRefGoogle Scholar
  17. Glauert M (1956) The wall jet. J Fluid Mech 1:625–643MathSciNetCrossRefGoogle Scholar
  18. Goldstein R, Behbahani A, Heppelmann KK (1986) Streamwise distribution of the recovery factor and the local heat transfer coefficient to an impinging circular air jet. Int J Heat Mass Transf 29(8):1227–1235CrossRefGoogle Scholar
  19. Guo T, Rau MJ, Vlachos PP, Garimella SV (2017) Axisymmetric wall jet development in confined jet impingement. Phys Fluids 29:025,102CrossRefGoogle Scholar
  20. Hadžiabdić M, Hanjalić K (2008) Vortical structures and heat transfer in a round impinging jet. J Fluid Mech 596:221–260CrossRefGoogle Scholar
  21. Han B, Goldstein R (2001) Jet-impingement heat transfer in gas turbine systems. Ann N Y Acad Sci 934:147–161CrossRefGoogle Scholar
  22. Hoogendoorn C (1977) The effect of turbulence on heat transfer at a stagnation point. Int J Heat Mass Transf 20(12):1333–1338CrossRefGoogle Scholar
  23. Ianiro A, Violato D, Scarano F, Cardone G (2012) Three dimensional features in swirling impinging jets. In: 15th int. symposium on flow visualization, MinskGoogle Scholar
  24. Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94MathSciNetCrossRefGoogle Scholar
  25. Kalifa RB, Habli S, Saïd NM, Bournot H, Le Palec G (2016) Parametric analysis of a round jet impingement on a heated plate. Int J Heat Fluid Flow 57:11–23CrossRefGoogle Scholar
  26. Kaplan J (2003) Heated windshield wiper system employing pulsed high speed fluid impingement jets for cleaning and ice/snow removal. US Patent App. 10/435,305Google Scholar
  27. Kataoka K, Suguro M, Degawa H, Maruo K, Mihata I (1987) The effect of surface renewal due to largescale eddies on jet impingement heat transfer. Int J Heat Mass Transf 30:559–567CrossRefGoogle Scholar
  28. Knowles K, Myszko M (1998) Turbulence measurements in radial wall-jets. Exp Therm Fluid Sci 17:71–78CrossRefGoogle Scholar
  29. Kristiawan M, Meslem A, Nastase I, Sobolik V (2012) Wall shear rates and mass transfer in impinging jets: comparison of circular convergent and cross-shaped orifice nozzles. Int J Heat Mass Transf 55:282–293CrossRefGoogle Scholar
  30. Lasance CJ, Simons RE (2005) Advances in high-performance cooling for electronics. Electron Cool 11:22–39Google Scholar
  31. Launder B, Rodi W (1981) The turbulent wall jet. Progr Aerosp Sci 19:81–128CrossRefGoogle Scholar
  32. Lee J, Lee SJ (2000) The effect of nozzle aspect ratio on stagnation region heat transfer characteristics of elliptic impinging jet. Int J Heat Mass Transf 43:555–575CrossRefGoogle Scholar
  33. Livingood JN, Hrycak P (1973) Impingement heat transfer from turbulent air jets to flat plates: a literature survey. NASA Technical MemorandumGoogle Scholar
  34. Lytle D, Webb B (1994) Air jet impingement heat transfer at low nozzle-plate spacings. Int J Heat Mass Transf 37(12):1687–1697CrossRefGoogle Scholar
  35. Martin RH, Buchlin J (2011) Jet impingement heat transfer from lobed nozzles. Int J Therm Sci 50:1199–1206CrossRefGoogle Scholar
  36. Myers G, Schauer J, Eustis R (1963) Plane turbulent wall jet flow development and friction factor. J Bas Eng 85:47–53CrossRefGoogle Scholar
  37. Narayanan V, Seyed-Yagoobi J, Page R (2004) An experimental study of fluid mechanics and heat transfer in an impinging slot jet flow. Int J Heat Mass Transf 47:1827–1845CrossRefGoogle Scholar
  38. O’Donovan TS (2005) Fluid flow and heat transfer of an impinging air jet. Department of Mechanical and Manufacturing Engineering, University of Dublin, p 145Google Scholar
  39. Pieris S, Zhang X, Yarusevych S, Peterson SD (2017) Evolution of coherent structures in a two-dimensional impinging jet. In: 10th International symposium on turbulence and shear flow phenomena, Chicago, July 6–9Google Scholar
  40. Popiel CO, Trass O (1991) Visualization of a free and impinging round jet. Exp Therm Fluid Sci 4:253–264CrossRefGoogle Scholar
  41. Rajaratnam N, Mazurek K (2005) Impingement of circular turbulent jets on rough boundaries. J Hydraul Res 43:689–695CrossRefGoogle Scholar
  42. Reba I (1966) Applications of the coanda effect. Sci Am 214:84–93CrossRefGoogle Scholar
  43. Roux S, Fénot M, Lalizel G, Brizzi LE, Dorignac E (2011) Experimental investigation of the flow and heat transfer of an impinging jet under acoustic excitation. Int J Heat Mass Transf 54:3277–3290CrossRefGoogle Scholar
  44. Sakipov ZB (1964) Experimental study of semibounded jets. collection: problems of thermoenergetics and applied thermophysics [in Russian], no. 1, Applied Thermophysics, Izd. AN KazSSR, Alma AtaGoogle Scholar
  45. Sarkar A, Nitin N, Karwe M, Singh R (2004) Fluid flow and heat transfer in air jet impingement in food processing. J Food Sci 69:113–122CrossRefGoogle Scholar
  46. Schauer JJ, Eustis R (1963) The flow development and heat transfer characteristics of plane turbulent impinging jets. Dept. of Mechanical EngineeringGoogle Scholar
  47. Schauer JJ (1964) The flow development and heat transfer characteristics of plane, turbulent, impinging jets. Mechanical Engineering, Stanford University, p 84Google Scholar
  48. Schrader H (1961) Trocknung feuchter Oberflächen mittels Warmluftstrahlen: Strömungsvorgänge und Stoffübertragung. VDI-VerlagGoogle Scholar
  49. Schwarz W, Cosart W (1961) The two-dimensional turbulent wall-jet. J Fluid Mech 10:481–495CrossRefGoogle Scholar
  50. Sciacchitano A, Wieneke B (2016) PIV uncertainty propagation. Meas Sci Technol 27(8):084,006CrossRefGoogle Scholar
  51. Seban R, Back L (1961) Velocity and temperature profiles in a wall jet. Int J Heat Mass Transf 3:255–265CrossRefGoogle Scholar
  52. Sigalla A (1958) Measurements of skin friction in a plane turbulent wall jet. Aeronaut J 62:873–877CrossRefGoogle Scholar
  53. Sodjavi K, Montagné B, Bragança P, Meslem A, Byrne P, Degouet C, Sobolik V (2016) PIV and electrodiffusion diagnostics of flow field, wall shear stress and mass transfer beneath three round submerged impinging jets. Exp Therm Fluid Sci 70:417–436CrossRefGoogle Scholar
  54. Tanaka T, Tanaka E (1977) Experimental studies of a radial turbulent jet: 2nd report, wall jet on a flat smooth plate. Bull JSME 20:209–215CrossRefGoogle Scholar
  55. Tang Z, Rostamy N, Bergstrom D, Bugg J, Sumner D (2015) Incomplete similarity of a plane turbulent wall jet on smooth and transitionally rough surfaces. J Turbul 16:1076–1090CrossRefGoogle Scholar
  56. Tummers MJ, Jacobse J, Voorbrood SG (2011) Turbulent flow in the near field of a round impinging jet. Int J Heat Mass Transf 54:4939–4948CrossRefGoogle Scholar
  57. van der Hegge Zijnen BG (1924) Measurements of the velocity distribution in the boundary layer along a plane surface. Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, p 48Google Scholar
  58. Violato D, Ianiro A, Cardone G, Scarano F (2012) Three-dimensional vortex dynamics and convective heat transfer in circular and chevron impinging jets. Int J Heat Fluid Flow 37:22–36CrossRefGoogle Scholar
  59. Yakovlevskii O, Krasheninnikov SY (1966) Spreading of a turbulent jet impinging on a flat surface. Fluid Dyn 1:136–139CrossRefGoogle Scholar
  60. Yokobori S, Kasagi N, Hirata M, Nakamaru M, Haramura Y (1979) Characteristic behaviour of turbulence and transport phenomena at the stagnation region of an axi-symmetrical impinging jet. In: 2nd symposium on turbulent shear flows, pp 4–12Google Scholar
  61. Yokobori S, Kasagi N, Hirata M, Nishiwaki N (1978) Role of large-scale eddy structure on enhancement of heat transfer in stagnation region of two-dimensional, submerged, impinging jet. In: 6th international heat transfer conference, vol 5, pp 305–310Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations