Advertisement

Experiments in Fluids

, 59:97 | Cite as

Real-time quantitative Schlieren imaging by fast Fourier demodulation of a checkered backdrop

  • Sander Wildeman
Research Article

Abstract

A quantitative synthetic Schlieren imaging (SSI) method based on fast Fourier demodulation is presented. Instead of a random dot pattern (as usually employed in SSI), a 2D periodic pattern (such as a checkerboard) is used as a backdrop to the refractive object of interest. The range of validity and accuracy of this “Fast Checkerboard Demodulation” (FCD) method are assessed using both synthetic data and experimental recordings of patterns optically distorted by small waves on a water surface. It is found that the FCD method is at least as accurate as sophisticated, multi-stage, digital image correlation (DIC) or optical flow (OF) techniques used with random dot patterns, and it is significantly faster. Efficient, fully vectorized, implementations of both the FCD and DIC/OF schemes developed for this study are made available as open source Matlab scripts.

Notes

Acknowledgements

I am indebted to Antonin Eddi and Emmanuel Fort for their enthusiastic support during the development of the FCD method in their groups. I would also like to thank Guillaume Du Moulinet d’Hardemare and Lucie Domino for testing the method in their experiments and giving the necessary practical feedback.

References

  1. Akatsuka J, Nagai S, Honami S (2011) Background oriented schlieren: improved flow visualization methods based on the background oriented Schlieren technique. Japan Soc Mech Eng 77(784):173.  https://doi.org/10.1299/kikaib.77.2391 Google Scholar
  2. Atcheson B, Heidrich W, Ihrke I (2009) An evaluation of optical flow algorithms for background oriented schlieren imaging. Exp Fluids 46(3):467.  https://doi.org/10.1007/s00348-008-0572-7 CrossRefGoogle Scholar
  3. Bon P, Monneret S, Wattellier B (2012) Noniterative boundary-artifact-free wavefront reconstruction from its derivatives. Appl Opt 51(23):5698.  https://doi.org/10.1364/AO.51.005698 CrossRefGoogle Scholar
  4. Brox T, Bruhn A, Papenberg N, Weickert J (2004) High accuracy optical flow estimation based on a theory for warping. In: Pajdla T, Matas J (eds) Computer Vision—ECCV 2004: 8th European Conference on Computer Vision, Prague, Czech Republic, May 11–14, 2004. Proceedings, Part IV. Springer, Berlin, Heidelberg, pp 25–36.  https://doi.org/10.1007/978-3-540-24673-2-3
  5. Burton RA (1949) A modified schlieren apparatus for large areas of field. J Opt Soc Am 39(11):907.  https://doi.org/10.1364/JOSA.39.000907 CrossRefGoogle Scholar
  6. Carson J (1922) Notes on the Theory of Modulation. Proc IRE 10(1):57.  https://doi.org/10.1109/JRPROC.1922.219793 CrossRefGoogle Scholar
  7. Cheng Y, Shen HL, Du X (2012) Robust surface reconstruction from gradient fields. Electron Lett 48(7):375.  https://doi.org/10.1049/el.2011.4081 CrossRefGoogle Scholar
  8. Cobelli PJ, Maurel A, Pagneux V, Petitjeans P (2009) Global measurement of water waves by Fourier transform profilometry. Exp Fluids 46(6):1037.  https://doi.org/10.1007/s00348-009-0611-z CrossRefGoogle Scholar
  9. Dalziel SB, Hughes GO, Sutherland BR (2000) Whole-field density measurements by ‘synthetic schlieren’. Exp Fluids 28(4):322.  https://doi.org/10.1007/s003480050391 CrossRefGoogle Scholar
  10. Frankot RT, Chellappa R (1988) A method for enforcing integrability in shape from shading algorithms. IEEE Trans Pattern Anal Mach Intell 10(4):439.  https://doi.org/10.1109/34.3909 CrossRefzbMATHGoogle Scholar
  11. Fu Y, Wang Y, Wu J, Jiang G (2013) Dual-frequency fringe Fourier transform profilometry based on defocusing. Opt Commun 295(4):92.  https://doi.org/10.1016/j.optcom.2013.01.013 CrossRefGoogle Scholar
  12. Grédiac M, Sur F, Blaysat B (2016) The grid method for in-plane displacement and strain measurement: a review and analysis. Strain 52(3):205.  https://doi.org/10.1111/str.12182 CrossRefGoogle Scholar
  13. Hargather MJ, Settles GS (2010) Natural-background-oriented schlieren imaging. Exp Fluids 48(1):59.  https://doi.org/10.1007/s00348-009-0709-3 CrossRefGoogle Scholar
  14. Harker M, O’Leary P (2011) Least squares surface reconstruction from gradients: direct algebraic methods with spectral, Tikhonov, and constrained regularization. In: CVPR 2011 (IEEE, 2011), pp 2529–2536.  https://doi.org/10.1109/CVPR.2011.5995427
  15. Hatanaka K, Saito T (2015) Background oriented schlieren method using multi-scale periodic pattern. In: Bonazza R, Ranjan D (eds) 29th International Symposium on Shock Waves 1, vol 1. Springer International Publishing, Cham, pp 453–458CrossRefGoogle Scholar
  16. Hayasaka K, Tagawa Y, Liu T, Kameda M (2016) Optical-flow-based background-oriented schlieren technique for measuring a laser-induced underwater shock wave. Exp Fluids 57:179.  https://doi.org/10.1007/s00348-016-2271-0 CrossRefGoogle Scholar
  17. Herráez MA, Burton DR, Lalor MJ, Gdeisat MA (2002) Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path. Appl Opt 41(35):7437.  https://doi.org/10.1364/AO.41.007437 CrossRefGoogle Scholar
  18. Horn BK, Schunck BG (1981) Determining optical flow. Artif Intell 17(1–3):185.  https://doi.org/10.1016/0004-3702(81)90024-2 CrossRefGoogle Scholar
  19. Huhn F, Schanz D, Gesemann S, Schröder A (2016) FFT integration of instantaneous 3D pressure gradient fields measured by Lagrangian particle tracking in turbulent flows. Exp Fluids 57(9):1.  https://doi.org/10.1007/s00348-016-2236-3 CrossRefGoogle Scholar
  20. Karacali B, Snyder W (2002) Partial integrability in surface reconstruction from a given gradient field. In: Proceedings. Int. Conf. Image Process., vol 2 (IEEE, 2002), pp II-525–II-528.  https://doi.org/10.1109/ICIP.2002.1040003
  21. Letelier JA, Herrera P, Mujica N, Ortega JH (2016) Enhancement of synthetic schlieren image resolution using total variation optical flow: application to thermal experiments in a Hele–Shaw cell. Exp Fluids 57(2):1.  https://doi.org/10.1007/s00348-015-2109-1 CrossRefGoogle Scholar
  22. Lohry W, Zhang S (2012) Fourier transform profilometry using a binary area modulation technique. Opt Eng 51(11):113602.  https://doi.org/10.1117/1.OE.51.11.113602 CrossRefGoogle Scholar
  23. Meier G (2002) Computerized background-oriented schlieren. Exp Fluids 33(1):181.  https://doi.org/10.1007/s00348-002-0450-7 CrossRefGoogle Scholar
  24. Meinhardt-Llopis E, Pérez JS, Kondermann D (2013) Horn–Schunck optical flow with a multi-scale strategy. Image Proc On Line 3:151–172.  https://doi.org/10.5201/ipol.2013.20 CrossRefGoogle Scholar
  25. Meunier P, Leweke T (2003) Analysis and treatment of errors due to high velocity gradients in particle image velocimetry. Exp Fluids 35(5):408.  https://doi.org/10.1007/s00348-003-0673-2 CrossRefGoogle Scholar
  26. Moisy F, Rabaud M, Salsac K (2009) A synthetic Schlieren method for the measurement of the topography of a liquid interface. Exp Fluids 46(6):1021.  https://doi.org/10.1007/s00348-008-0608-z CrossRefGoogle Scholar
  27. Murase H (1990) Surface shape reconstruction of an undulating transparent object. Int Conf Comput Vis.  https://doi.org/10.1109/ICCV.1990.139539 Google Scholar
  28. Nobach H, Honkanen M (2005) Two-dimensional Gaussian regression for sub-pixel displacement estimation in particle image velocimetry or particle position estimation in particle tracking velocimetry. Exp Fluids 38(4):511.  https://doi.org/10.1007/s00348-005-0942-3 CrossRefGoogle Scholar
  29. Padfield D (2010) Masked FFT registration. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit, pp 2918–2925.  https://doi.org/10.1109/CVPR.2010.5540032
  30. Pujado PR, Scriven LE (1972) Sessile lenticular configurations: translationally and rotationally symmetric lenses. J Colloid Interface Sci 40(1):82.  https://doi.org/10.1016/0021-9797(72)90175-0 CrossRefGoogle Scholar
  31. Quéau Y, Durou JD, Aujol JF (2018) Normal integration: a survey. J Math Imaging Vis 60(4):576.  https://doi.org/10.1007/s10851-017-0773-x MathSciNetCrossRefzbMATHGoogle Scholar
  32. Raffel M (2015) Background-oriented schlieren (BOS) techniques. Exp Fluids 56(3):1.  https://doi.org/10.1007/s00348-015-1927-5 CrossRefGoogle Scholar
  33. Richard H, Raffel M (2001) Principle and applications of the background oriented schlieren (BOS) method. Meas Sci Technol 12(9):1576.  https://doi.org/10.1088/0957-0233/12/9/325 CrossRefGoogle Scholar
  34. Román FL, Faro J, Velasco S (2001) A simple experiment for measuring the surface tension of soap solutions. Am J Phys 69(8):920.  https://doi.org/10.1119/1.1365402 CrossRefGoogle Scholar
  35. Ross DS (1992) An algorithm for determining the shape of floating fluid lenses. J Colloid Interface Sci 154(1):66.  https://doi.org/10.1016/0021-9797(92)90078-Z CrossRefGoogle Scholar
  36. Schardin H (1942) Die Schlierenverfahren und ihre Anwendungen. In: Ergebnisse der exakten naturwissenschaften. Springer, Berlin, Heidelberg, pp 303–439.  https://doi.org/10.1007/BFb0111981
  37. Su XY, Zhou WS, von Bally G, Vukicevic D (1992) Automated phase-measuring profilometry using defocused projection of a Ronchi grating. Opt Commun 94(6):561.  https://doi.org/10.1016/0030-4018(92)90606-R CrossRefGoogle Scholar
  38. Sutherland BR, Dalziel SB, Hughes GO, Linden PF (1999) Visualization and measurement of internal waves by synthetic schlieren. Part 1. Vertically oscillating cylinder. J Fluid Mech 390:93.  https://doi.org/10.1017/S0022112099005017 CrossRefzbMATHGoogle Scholar
  39. Takeda M, Mutoh K (1983) Fourier transform profilometry for the automatic measurement of 3-D object shapes. Appl Opt 22(24):3977.  https://doi.org/10.1364/AO.22.003977 CrossRefGoogle Scholar
  40. Takeda M, Ina H, Kobayashi S (1982) Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J Opt Soc Am 72(1):156.  https://doi.org/10.1364/JOSA.72.000156 CrossRefGoogle Scholar
  41. Thielicke W, Stamhuis E (2014) Pivlab-towards user-friendly, affordable and accurate digital particle image velocimetry in matlab. J Open Res Softw 2(1):e30.  https://doi.org/10.5334/jors.bl Google Scholar
  42. Volkov VV, Zhu Y (2003) Deterministic phase unwrapping in the presence of noise. Opt Lett 28(22):2156.  https://doi.org/10.1364/OL.28.002156 CrossRefGoogle Scholar
  43. Wildeman S (2017) Matlab implementations of FCD and DIC+OF methods. https://github.com/swildeman/fcd. https://github.com/swildeman/dicflow
  44. Yang Z, Johnson M (2017) Hybrid particle image velocimetry with the combination of cross-correlation and optical flow method. J Vis 20(3):625.  https://doi.org/10.1007/s12650-017-0417-7 CrossRefGoogle Scholar
  45. Yun H, Li B, Zhang S (2017) Pixel-by-pixel absolute three-dimensional shape measurement with modified Fourier transform profilometry. Appl Opt 56(5):1472.  https://doi.org/10.1364/AO.56.001472 CrossRefGoogle Scholar
  46. Zhang X (1996) An algorithm for calculating water surface elevations from surface gradient image data. Exp Fluids 21(1):43.  https://doi.org/10.1007/BF00204634 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut Langevin-Ondes et Images, ESPCIPSL Research UniversityParis Cedex 05France

Personalised recommendations