Experiments in Fluids

, 58:131 | Cite as

Experimental investigation of high-incidence delta-wing flow control

  • Andrei BuzicaEmail author
  • Julius Bartasevicius
  • Christian Breitsamter
Research Article


The possibility of extending the flight envelope for configurations with slender delta-shaped wings is investigated in this study by means of active flow control through pulsating jets from slot pairs distributed along the leading edge. The experiments comprise stereoscopic particle image velocimetry as well as force and moment measurements on a half-delta wing model. The analysis focuses on three high-incidence regimes: pre-stall, stall, and post-stall. This study also compares different perturbation methods: blowing with spatially constant and variable parameters, frequency and phase. At an incidence of 45\(^\circ\), the unison pulsed blowing facilitates the most significant flow transformation. Here, the separated shear layer reattaches on the wing’s suction side, thus increasing the lift. Phase-averaged flow field measurements describe, in this particular case, the underlying physics of the flow–disturbance interaction.



The funding of the research work by the “Deutsche Forschungsgemeinschaft” (German Research Foundation/DFG) through the project DFG-BR1511-6 is gratefully acknowledged.


  1. Bartasevicius J, Buzica A, Breitsamter C (2016) Discrete vortices on delta wings with unsteady leading-edge blowing. In: 8th AIAA flow control conference, AIAA Paper 2016-3170, Washington DC, USA. doi: 10.2514/6.2016-3170
  2. Breitsamter C (2008) Unsteady flow phenomena associated with leading-edge vortices. Prog Aerosp Sci 44(1):48–65. doi: 10.1016/j.paerosci.2007.10.002 CrossRefGoogle Scholar
  3. Buzica A, Bartasevicius J, Breitsamter C (2016) Active vortex flow control on a generic delta wing. In: 30th congress of the international council of the aeronautical sciences, Paper ICAS 2016-10.3.1. Daejon, KoreaGoogle Scholar
  4. Gad-El-Hak M, Blackwelder RF (1987) Control of the discrete vortices from a delta wing. AIAA J 25(8):1042–1049. doi: 10.2514/3.9740 CrossRefGoogle Scholar
  5. Gu W, Robinson O, Rockwell D (1993) Control of vortices on a delta wing by leading-edge injection. AIAA J 31(7):1177–1186. doi: 10.2514/3.11749 CrossRefGoogle Scholar
  6. Gursul I (2005) Review of unsteady vortex flows over delta wings. J Aircr 42(2):299–319. doi: 10.2514/1.5269 CrossRefGoogle Scholar
  7. Hall MG (1972) Vortex breakdown. Annu Rev Fluid Mech 4(1):195–218. doi: 10.1146/annurev.fl.04.010172.001211 CrossRefzbMATHGoogle Scholar
  8. Hummel D (1978) On the vortex formation over a slender wing at large angles of incidence. In: AGARD specialists’ meeting on “High angle of attack aerodynamics”, vol AGARD-CP-247. Sandefjord, Norway, pp 1–17Google Scholar
  9. Hummel D (2008) The second international vortex flow experiment (VFE-2): results of the first phase 2003–2008. In: 26th congress of the international council of the aeronautical sciences, Paper ICAS 2008-3.3.1 (invited). Anchorage (AK), USAGoogle Scholar
  10. Klute SM, Vlachos PP, Telionis DP (2005) High-speed digital-particle-image-velocimetry study of vortex breakdown. AIAA J 43(3):642–650. doi: 10.2514/1.4474 CrossRefGoogle Scholar
  11. Kölzsch A, Breitsamter C (2014a) Delta wing flow control for the stall and post-stall regime. In: 63. Deutscher Luft-und Raumfahrtkongress DLRK, Paper DLRK 2014-0126. Augsburg, GermanyGoogle Scholar
  12. Kölzsch A, Breitsamter C (2014b) Vortex-flow manipulation on a generic delta-wing configuration. J Aircr 51(5):1380–1390. doi: 10.2514/1.C032231 CrossRefGoogle Scholar
  13. Kölzsch A, Blanchard S, Breitsamter C (2016) Dynamic actuation for delta wing post stall flow control. In: Dillmann A, Heller G, Krämer E, Wagner C, Breitsamter C (eds) New results in numerical and experimental fluid mechanics X. Notes on numerical fluid mechanics and multidisciplinary design, vol 132. Springer, Cham, pp 823–832. doi:10.1007/978-3-319-27279-5-72Google Scholar
  14. Leibovich S (1984) Vortex stability and breakdown: survey and extension. AIAA J 22(9):1192–1206. doi: 10.2514/3.8761 CrossRefGoogle Scholar
  15. Lucca-Negro O, O’Doherty T (2001) Vortex breakdown: a review. Prog Energy Combust 27(4):431–481. doi: 10.1016/S0360-1285(00)00022-8 CrossRefGoogle Scholar
  16. Margalit S, Greenblatt D, Seifert A, Wygnanski IJ (2005) Delta wing stall and roll control using segmented piezoelectric fluidic actuators. J Aircr 42(3):698–709. doi: 10.2514/1.6904 CrossRefGoogle Scholar
  17. Menke M, Yang H, Gursul I (1999) Experiments on the unsteady nature of vortex breakdown over delta wings. Exp Fluids 27(3):262–272. doi: 10.1007/s003480050351 CrossRefGoogle Scholar
  18. Mitchell AM, Molton P (2001) Vortical substructures in the shear layers forming leading-edge vortices. AIAA J 40(8):1689–1692. doi: 10.2514/3.15250 CrossRefGoogle Scholar
  19. Mitchell AM, Morton SA, Forsythe JR, Cummings RM (2006) Analysis of delta-wing vortical substructures using detached-eddy simulation. AIAA J 44(5):964–972. doi: 10.2514/1.755 CrossRefGoogle Scholar
  20. Mitchell AM, Délery J (2001) Research into vortex breakdown control. Prog Aerosp Sci 37(4):385–418. doi: 10.1016/S0376-0421(01)00010-0 CrossRefGoogle Scholar
  21. Siegel SG, Mclaughlin TE, Morrow JA (2001) PIV measurements on a delta wing with periodic blowing and suction. In: 19th applied aerodynamics conference, AIAA Paper 2001–2436, Anaheim (CA), USA. doi: 10.2514/6.2000-550
  22. Stanislas M, Okamoto K, Kähler CJ, Westerweel J (2005) Main results of the second international PIV challenge. Exp Fluids 39:170–191. doi: 10.1007/s00348-005-0951-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Chair of Aerodynamics and Fluid Mechanics, Department of Mechanical EngineeringTechnical University of MunichGarchingGermany

Personalised recommendations