Experiments in Fluids

, 58:103 | Cite as

Drag reduction of a car model by linear genetic programming control

  • Ruiying Li
  • Bernd R. Noack
  • Laurent Cordier
  • Jacques Borée
  • Fabien Harambat
Research Article

Abstract

We investigate open- and closed-loop active control for aerodynamic drag reduction of a car model. Turbulent flow around a blunt-edged Ahmed body is examined at \(Re_{H}\approx 3\times 10^{5}\) based on body height. The actuation is performed with pulsed jets at all trailing edges (multiple inputs) combined with a Coanda deflection surface. The flow is monitored with 16 pressure sensors distributed at the rear side (multiple outputs). We apply a recently developed model-free control strategy building on genetic programming in Dracopoulos and Kent (Neural Comput Appl 6:214–228, 1997) and Gautier et al. (J Fluid Mech 770:424–441, 2015). The optimized control laws comprise periodic forcing, multi-frequency forcing and sensor-based feedback including also time-history information feedback and combinations thereof. Key enabler is linear genetic programming (LGP) as powerful regression technique for optimizing the multiple-input multiple-output control laws. The proposed LGP control can select the best open- or closed-loop control in an unsupervised manner. Approximately 33% base pressure recovery associated with 22% drag reduction is achieved in all considered classes of control laws. Intriguingly, the feedback actuation emulates periodic high-frequency forcing. In addition, the control identified automatically the only sensor which listens to high-frequency flow components with good signal to noise ratio. Our control strategy is, in principle, applicable to all multiple actuators and sensors experiments.

Notes

Acknowledgements

The authors acknowledge the great support during the experiment by J.-M. Breux, J. Laumonier, P. Braud and R. Bellanger. The thesis of RL is supported by the OpenLab Fluidics between PSA Peugeot-Citroën and Institute Pprime (Fluidics @ poitiers). We appreciate valuable stimulating discussions with: Markus Abel, Diogo Barros, Steven Brunton, Eurika Kaiser, Siniša Krajnović, Vladimir Parezanović, Rolf Radespiel, Peter Scholz, Richard Semaan, Andreas Spohn and Mattias Wahde.

References

  1. Ahmed SR, Ramm G, Faltin G (1984) Some salient features of the time averaged ground vehicle wake. Society of Automotive Engineers, SAE Inc 840300, USAGoogle Scholar
  2. Aubrun S, McNally J, Alvi F, Kourta A (2011) Separation flow control on a generic ground vehicle using steady microjet arrays. Exp Fluids 51(5):1177–1187CrossRefGoogle Scholar
  3. Bagheri S, Brandt L, Henningson DS (2009) Input–output analysis, model reduction and control of the flat-plate boundary layer. J Fluid Mech 620:263–298MathSciNetCrossRefMATHGoogle Scholar
  4. Barros D, Borée J, Noack BR, Spohn A, Ruiz T (2016) Bluff body drag manipulation using pulsed jets and Coanda effect. J Fluid Mech 805:422–459MathSciNetCrossRefGoogle Scholar
  5. Barros D (2015) Wake and drag manipulation of a bluff body using fluidic forcing. PhD thesis, École Nationale Supérieure de Mécanique et d’Aérotechnique, Poitiers, FranceGoogle Scholar
  6. Beaudoin J-F, Cadot O, Aider J-L, Wesfreid J (2006) Drag reduction of a bluff body using adaptive control methods. Phys Fluids 18(8):085107CrossRefGoogle Scholar
  7. Becker R, Garwon M, Gutknecht C, Bärwolff G, King R (2005) Robust control of separated shear flows in simulation and experiment. J Process Control 15(6):691–700CrossRefGoogle Scholar
  8. Brameier M, Banzhaf W (2007) Linear genetic programming. Springer Science & Business Media, BerlinGoogle Scholar
  9. Brunton SL, Noack BR (2015) Closed-loop turbulence control: progress and challenges. Appl Mech Rev 67(5):050801CrossRefGoogle Scholar
  10. Cattafesta L, Shelpak M (2011) Actuators for active flow control. Ann Rev Fluid Mech 43:247–272CrossRefMATHGoogle Scholar
  11. Choi H, Jeon W-P, Kim J (2008) Control of flow over a bluff body. Ann Rev Fluid Mech 40:113–139MathSciNetCrossRefMATHGoogle Scholar
  12. Choi H, Lee J, Park H (2014) Aerodynamics of heavy vehicles. Ann Rev Fluid Mech 46:441–468MathSciNetCrossRefMATHGoogle Scholar
  13. Dahan JA, Morgans AS, Lardeau S (2012) Feedback control for form-drag reduction on a bluff body with a blunt trailing edge. J Fluid Mech 704:360–387CrossRefMATHGoogle Scholar
  14. Debien A, von Krbek KAFF, Mazellier N, Duriez T, Cordier L, Noack BR, Abel MW, Kourta A (2016) Closed-loop separation control over a sharp-edge ramp using genetic programming. Exp Fluids 57(40):1–19Google Scholar
  15. Dracopoulos DC, Kent S (1997) Genetic programming for prediction and control. Neural Comput Appl 6:214–228CrossRefGoogle Scholar
  16. Duriez T, Parezanović V, Laurentie J-C, Fourment C, Delville J, Bonnet J-P, Cordier L, Noack BR, Segond M, Abel MW, Gautier N, Aider J-L, Raibaudo C, Cuvier C, Stanislas M, Brunton S (2014) Closed-loop control of experimental shear layers using machine learning (invited). In: 7th AIAA flow control conference, Atlanta, Georgia, pp 1–16Google Scholar
  17. Duriez T, Brunton S, Noack BR (2016) Machine learning control—taming nonlinear dynamics and turbulence. Fuid mechanics and its applications series, vol 116. Springer, New YorkGoogle Scholar
  18. Englar RJ (2004) Pneumatic heavy vehicle aerodynamic drag reduction, safety enhancement, and performance improvement. In: The aerodynamics of heavy vehicles: trucks, buses, and trainsGoogle Scholar
  19. Garwon M, King R (2005) A multivariable adaptive control strategy to regulate the separated flow behind a backward-facing step. In 16th IFAC World Congress, Prague, Czech RepublicGoogle Scholar
  20. Gautier N, Aider J-L, Duriez T, Noack BR, Segond M, Abel MW (2015) Closed-loop separation control using machine learning. J Fluid Mech 770:424–441CrossRefGoogle Scholar
  21. Gerhard J, Pastoor M, King R, Noack BR, Dillmann A, Morzynski M, Tadmor G (2003) Model-based control of vortex shedding using low-dimensional Galerkin models. AIAA Pap 4262(2003):115–173Google Scholar
  22. Glezer A, Amitay M, Honohan AM (2005) Aspects of low-and high-frequency actuation for aerodynamic flow control. AIAA J 43(7):1501–1511CrossRefGoogle Scholar
  23. Grandemange M, Gohlke M, Cadot O (2013) Turbulent wake past a three-dimensional blunt body. Part 1. Global modes and bi-stability. J Fluid Mech 722:51–84CrossRefMATHGoogle Scholar
  24. Henning L, King R (2007) Robust multivariable closed-loop control of a turbulent backward-facing step flow. J Aircraft 44(1):201–208CrossRefGoogle Scholar
  25. Hucho W-H (1998) Aerodynamics of road vehicles: from fluid mechanics to vehicle engineering. Society of Automotive Engineers, USAGoogle Scholar
  26. Joseph P, Amandolese X, Edouard C, Aider J-L (2013) Flow control using MEMS pulsed micro-jets on the Ahmed body. Exp Fluids 54(1):1–12CrossRefGoogle Scholar
  27. Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. The MIT Press, BostonMATHGoogle Scholar
  28. Lewalle J (1995) Tutorial on continuous wavelet analysis of experimental data. In: Mechanical Aerospace and Manufacturing Engineering Dept., Syracuse University. http://www.mame.syr.edu/faculty/lewalle/tutor/tutor.html
  29. Li R, Barros D, Borée J, Cadot O, Noack BR, Cordier L (2016) Feedback control of bi-modal wake dynamics. Exp Fluids 57:1–6CrossRefGoogle Scholar
  30. Liepmann HW, Nosenchuck DM (1982) Active control of laminar-turbulent transition. J Fluid Mech 118:201–204CrossRefGoogle Scholar
  31. Narayanan S, Noack BR, Banaszuk A, Khibnik AI (2002) Active separation control concept: dynamic forcing of induced separation using harmonically related frequency, 2002. United States Patent 6360763Google Scholar
  32. Oxlade AR, Morrison JF, Qubain A, Rigas G (2015) High-frequency forcing of a turbulent axisymmetric wake. J Fluid Mech 770:305–318CrossRefGoogle Scholar
  33. Parezanović V, Cordier L, Spohn A, Duriez T, Noack BR, Bonnet J-P, Segond M, Abel M, Brunton SL (2016) Frequency selection by feedback control in a turbulent shear flow. J Fluid Mech 797:247–283CrossRefGoogle Scholar
  34. Pastoor M, Henning L, Noack BR, King R, Tadmor G (2008) Feedback shear layer control for bluff body drag reduction. J Fluid Mech 608:161–196CrossRefMATHGoogle Scholar
  35. Pfeiffer J, King R (2012) Multivariable closed-loop flow control of drag and yaw moment for a 3D bluff body. In: 6th AIAA flow control conference, Atlanta, Georgia, USA, pp 1–14Google Scholar
  36. Protas B (2004) Linear feedback stabilization of laminar vortex shedding based on a point vortex model. Phys Fluids 16(12):4473–4488MathSciNetCrossRefMATHGoogle Scholar
  37. Roshko A (1955) On the wake and drag of bluff bodies. J Aeronaut Sci 22(2):124–132CrossRefMATHGoogle Scholar
  38. Rouméas M, Gilliéron P, Kourta A (2009) Drag reduction by flow separation control on a car after body. Int J Num Methods Fluids 60(11):1222–1240CrossRefMATHGoogle Scholar
  39. Roussopoulos K (1993) Feedback control of vortex shedding at low Reynolds numbers. J Fluid Mech 248:267–296CrossRefGoogle Scholar
  40. Rowley CW, Williams DR, Colonius T, Murray RM, MacMynowski DG (2006) Linear models for control of cavity flow oscillations. J Fluid Mech 547:317–330CrossRefMATHGoogle Scholar
  41. Ruiz T, Sicot C, Brizzi LE, Borée J, Gervais Y (2010) Pressure/velocity coupling induced by a near wall wake. Exp Fluids 49(1):147–165CrossRefMATHGoogle Scholar
  42. Samimy M, Debiasi M, Caraballo E, Serrani A, Yuan X, Little J, Myatt JH (2007) Feedback control of subsonic cavity flows using reduced-order models. J Fluid Mech 579:315–346MathSciNetCrossRefMATHGoogle Scholar
  43. Schmidt HJ, Woszidlo R, Nayeri CN, Paschereit CO (2015) Drag reduction on a rectangular bluff body with base flaps and fluidic oscillators. Exp Fluids 56(7):1–16CrossRefGoogle Scholar
  44. Seifert A, Shtendel T, Dolgopyat D (2015) From lab to full scale active flow control drag reduction: how to bridge the gap? J Wind Eng Ind Aerodyn 147:262–272CrossRefGoogle Scholar
  45. Wahde M (2008) Biologically inspired optimization methods: an introduction. WIT Press, AshurstGoogle Scholar
  46. Zhang M, Cheng L, Zhou Y (2004) Closed-loop-controlled vortex shedding and vibration of a flexibly supported square cylinder under different schemes. Phys Fluids 16(5):1439–1448CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institut PPRIMECNRS-Université de Poitiers-ISAE-ENSMAChasseneuil-du-PoitouFrance
  2. 2.LIMSI-CNRSOrsay cedexFrance
  3. 3.Technische Universität BraunschweigBraunschweigGermany
  4. 4.Institut für Strömungsmechanik und Technische Akustik (ISTA)Technische Universität BerlinBerlinGermany
  5. 5.PSA Peugeot CitroënCentre Technique de VélizyVélizy-VillacoublayFrance

Personalised recommendations