Experiments in Fluids

, 58:32 | Cite as

Turbulent spots in hypervelocity flow

  • Joseph S. JewellEmail author
  • Ivett A. Leyva
  • Joseph E. Shepherd
Research Article


The turbulent spot propagation process in boundary layer flows of air, nitrogen, carbon dioxide, and air/carbon dioxide mixtures in thermochemical nonequilibrium at high enthalpy is investigated. Experiments are performed in a hypervelocity reflected shock tunnel with a 5-degree half-angle axisymmetric cone instrumented with flush-mounted fast-response coaxial thermocouples. Time-resolved and spatially demarcated heat transfer traces are used to track the propagation of turbulent bursts within the mean flow, and convection rates at approximately 91, 74, and 63% of the boundary layer edge velocity, respectively, are observed for the leading edge, peak, and trailing edge of the spots. A simple model constructed with these spot propagation parameters is used to infer spot generation rates from observed transition onset to completion distance. Spot generation rates in air and nitrogen are estimated to be approximately twice the spot generation rates in air/carbon dioxide mixtures.


Mach Number Direct Numerical Simulation Spreading Angle Shock Tunnel Transition Onset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Bahram Valiferdowsi (California Institute of Technology) and Nick Parziale (Stevens Institute of Technology) for assistance running T5, and Ross Wagnild (Sandia National Laboratories) for help with the program to compute run conditions. Hans Hornung (California Institute of Technology) suggested animating the heat-transfer contours and Thomas Juliano (Notre Dame) provided advice on exporting movies.


  1. Abu-Ghannam BJ, Shaw R (1980) Natural transition of boundary layers-the effects of turbulence, pressure gradient. J Mech Eng Sci 22(5):213–228. doi: 10.1243/JMES_JOUR_1980_022_043_02
  2. Anthony RJ, Jones TV, LaGraff JE (2005) High frequency surface heat flux imaging of bypass transition. J Turbomach 127(2):241–250. doi: 10.1115/1.1860379 CrossRefGoogle Scholar
  3. Bitter NP, Shepherd JE (2015) Stability of highly cooled hypervelocity boundary layers. J Fluid Mech 778:586–620MathSciNetCrossRefGoogle Scholar
  4. Casper KM, Beresh SJ, Schneider SP (2014) Pressure fluctuations beneath instability wavepackets and turbulent spots in a hypersonic boundary layer. J Fluid Mech 756:1058–1091. doi: 10.1017/jfm.2014.475 CrossRefGoogle Scholar
  5. Casper KM, Beresh SJ, Henfling JF, Spillers RW, Pruett BOM, Schneider SP (2016) Hypersonic wind-tunnel measurements of boundary-layer transition on a slender cone. AIAA J 54(1):1250–1263. doi: 10.2514/1.J054033 CrossRefGoogle Scholar
  6. Cebeci T, Smith AMO (1974) Analysis of turbulent boundary layers. Academic Press, LondonzbMATHGoogle Scholar
  7. Chen KK, Thyson NA (1971) Extension of Emmons’ spot theory to flows on blunt bodies. AIAA J 9(5):821–825. doi: 10.2514/3.6281 CrossRefGoogle Scholar
  8. Chong TP, Zhong S (2005) On the three-dimensional structure of turbulent spots. J Turbomach 127(3):545–551. doi: 10.1115/GT2003-38435 CrossRefGoogle Scholar
  9. Clark JP (1993) A Study of turbulent-spot propagation in turbine-representative flows. PhD thesis, University of Oxford, Oxford, UKGoogle Scholar
  10. Clark JP, Jones TV, LaGraff JE (1994) On the propagation of naturally-occurring turbulent spots. J Eng Math 28(1):1–19. doi: 10.1007/BF02383602 CrossRefGoogle Scholar
  11. Dhawan S, Narasimha R (1958) Some properties of boundary layer flow during the transition from laminar to turbulent motion. J Fluid Mech 3(4):418–436. doi: 10.1017/S0022112058000094 CrossRefzbMATHGoogle Scholar
  12. Doorley DJ, Smith FT (1992) Initial-value problems for spot disturbances in incompressible or compressible boundary layers. J Eng Math 26(1):87–106. doi: 10.1007/BF00043229 MathSciNetCrossRefGoogle Scholar
  13. Draper NR, Smith H (1998) Applied regression analysis. Wiley-Interscience, New YorkCrossRefzbMATHGoogle Scholar
  14. Emmons HW (1951) The laminar-turbulent transition in a boundary layer: part I. J Aeronaut Sci 18(7):490–498. doi: 10.2514/8.2010 MathSciNetCrossRefzbMATHGoogle Scholar
  15. Fedorov AV (2003) Receptivity of a high-speed boundary layer to acoustic disturbances. J Fluid Mech 491:101–129. doi: 10.1017/S0022112003005263 CrossRefzbMATHGoogle Scholar
  16. Fedorov AV (2013) Receptivity of a supersonic boundary layer to solid particulates. J Fluid Mech 737:105–131. doi: 10.1017/jfm.2013.564 MathSciNetCrossRefzbMATHGoogle Scholar
  17. Fiala A, Hillier R, Mallinson SG, Wijesinghe HS (2006) Heat transfer measurement of turbulent spots in a hypersonic blunt-body boundary layer. J Fluid Mech 555:81–111. doi: 10.1017/S0022112006009396 CrossRefzbMATHGoogle Scholar
  18. Fischer MC (1972) Spreading of a turbulent disturbance. AIAA J 10(7):957–959. doi: 10.2514/3.50265 CrossRefGoogle Scholar
  19. Hofeldt AJ Jr (1996) The investigation of naturally-occurring turbulent spots using thin-film gauges. PhD thesis, University of Oxford, Oxford, UKGoogle Scholar
  20. Hornung HG (1992) Performance data of the new free-piston shock tunnel at GALCIT. In: Proceedings of 17th AIAA aerospace ground testing conference, AIAA, Nashville, TN. doi: 10.2514/6.1992-3943, AIAA-1992-3943
  21. James CS (1958) Observations of turbulent-burst geometry and growth in supersonic flow. NACA-TN-4235, NACAGoogle Scholar
  22. Jewell JS (2008) Boundary layer transition in hypersonic flows. Master’s thesis, University of Oxford, Oxford, UKGoogle Scholar
  23. Jewell JS (2014) Boundary-layer transition on a slender cone in hypervelocity flow with real gas effects. PhD thesis, California Institute of Technology, Pasadena, CA. doi: 10.7907/Z9H9935V
  24. Jewell JS, Shepherd JE (2014) T5 conditions report: Shots 2526–2823. Technical reports, California Institute of Technology, Pasadena, CA doi: 10.7907/Z9H9935V, GALCIT Report FM2014.002
  25. Jewell JS, Parziale NJ, Leyva IA, Shepherd JE (2017) Effects of shock-tube cleanliness on hypersonic boundary layer transition at high enthalpy. AIAA J 55(1):332–338. doi: 10.2514/1.J054897 CrossRefGoogle Scholar
  26. Jocksch A (2009) Direct numerical simulation of turbulent spots in high-speed boundary layers. PhD thesis, Eidgenössische Technische Hochschule ETH Zürich, Nr. 18104, Zürich, SwitzerlandGoogle Scholar
  27. Jocksch A, Kleiser L (2008) Growth of turbulent spots in high-speed boundary layers on a flat plate. Int J Heat Fluid Flow 29(6):1543–1557. doi: 10.1016/j.ijheatfluidflow.2008.08.008 CrossRefGoogle Scholar
  28. Kimmel RL (1993) The effect of pressure gradients on transition zone length in hypersonic boundary layers. WL-TR-94-3012, Wright LaboratoryGoogle Scholar
  29. Krishnan L, Sandham ND (2006) Effect of Mach number on the structure of turbulent spots. J Fluid Mech 566:225–234. doi: 10.1017/S0022112006002412 CrossRefzbMATHGoogle Scholar
  30. Laurence S, Wagner A, Hannemann K (2016) Experimental study of second-mode instability growth and breakdown in a hypersonic boundary layer using high-speed schlieren visualization. J Fluid Mech 797:471–503. doi: 10.1017/jfm.2016.280 CrossRefGoogle Scholar
  31. Laurence SJ, Wagner A, Hannemann K, Wartemann V, Lüdeke H, Tanno H, Itoh K (2012) Time-resolved visualization of instability waves in a hypersonic boundary layer. AIAA J 50(1):243–246. doi: 10.2514/1.J05112 CrossRefGoogle Scholar
  32. Marineau EC, Hornung HG (2009) Modeling and calibration of fast-response coaxial heat flux gages. In: 47th aerospace sciences meeting, AIAA, Orlando, FL doi: 10.2514/6.2009-737, aIAA-2009-0737
  33. Mee DJ (2002) Boundary-layer transition measurements in hypervelocity flows in a shock tunnel. AIAA J 40(8):1542–1548. doi: 10.2514/2.1851 CrossRefGoogle Scholar
  34. Mee DJ, Goyne CP (1996) Turbulent spots in boundary layers in a free-piston shock-tunnel flow. Shock Waves 6(6):337–343. doi: 10.1007/BF02511324 CrossRefGoogle Scholar
  35. Mee DJ, Tanguy G (2015) Turbulent spot initiation rates in boundary layers in a shock tunnel. In: Bonazza R, Ranjan D (eds) Proceedings of the 29th international symposium on shock waves 1, Springer, Cham, pp 623–628. doi: 10.1007/978-3-319-16835-7_99 CrossRefGoogle Scholar
  36. Narasimha R (1957) On the distribution of intermittency in the transition region of a boundary layer. J Aeronaut Sci 24(9):711–712. doi: 10.2514/8.3944 Google Scholar
  37. Narasimha R (1985) The laminar-turbulent transition zone in the boundary layer. Prog Aerosp Sci 22:29–80. doi: 10.1016/0376-0421(85)90004-1 CrossRefGoogle Scholar
  38. Parziale NJ, Jewell JS, Shepherd JE, Hornung HG (2012a) Shock tunnel noise measurement with resonantly enhanced focused schlieren deflectometry. In: Kontis K (eds) Proceedings of the 28th international symposium on shock waves, Springer, Berlin, Heidelberg, pp 747–752. doi: 10.1007/978-3-642-25688-2_113 CrossRefGoogle Scholar
  39. Parziale NJ, Shepherd JE, Hornung HG (2012b) Reflected shock tunnel noise measurement by focused differential interferometry. In: Proceedings of the 42nd AIAA fluid dynamics conference and exhibit, AIAA-2012-3261, New Orleans, Louisiana. doi: 10.2514/6.2012-3261
  40. Sanderson SR, Sturtevant B (2002) Transient heat flux measurement using a surface junction thermocouple. Rev Sci Instrum 73(7):2781–2787. doi: 10.1063/1.1484255 CrossRefGoogle Scholar
  41. Schubauer GB, Klebanoff PS (1955) Contributions on the mechanics of boundary-layer transition. NACA-TR-1289, NACAGoogle Scholar
  42. Sivasubramanian J, Fasel HF (2010) Direct numerical simulation of a turbulent spot in a cone boundary-layer at Mach 6. In: Proceedings of 40th AIAA fluid dynamics conference and exhibit, AIAA-2010-4599, Chicago, IL. doi: 10.2514/6.2010-4599
  43. Sivasubramanian J, Fasel HF (2012) Growth and breakdown of a wave packet into a turbulent spot in a cone boundary layer at mach 6. In: Proceedings of the 50th AIAA aerospace sciences meeting, AIAA-2012-0085, Nashville, Tennessee. doi: 10.2514/6.2012-0085
  44. Sivasubramanian J, Fasel HF (2015) Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6: fundamental breakdown. J Fluid Mech 768:175–218. doi: 10.1017/jfm.2014.678 CrossRefGoogle Scholar
  45. Vinod N, Rama G (2004) Pattern of breakdown of laminar flow into turbulent spots. Phys Rev Lett 93(11):114501. doi: 10.1103/PhysRevLett.93.114501 CrossRefGoogle Scholar
  46. White FM, Christoph GH (1972) A simple theory for the two-dimensional compressible turbulent boundary layer. J Basic Eng 94(3):636–642. doi: 10.1115/1.3425519 CrossRefGoogle Scholar
  47. York D, Evensen NM, Martınez ML, Delgado JDB (2004) Unified equations for the slope, intercept, and standard errors of the best straight line. Am J Phys 72(3):367–375CrossRefGoogle Scholar
  48. Zanchetta M, Hillier R (1996) Boundary layer transition on slender blunt cones at hypersonic speeds. In: Proceedings of the 20th international symposium on shock waves. ISSW, Pasadena, CA, pp 699–704Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2017

Authors and Affiliations

  1. 1.U.S. Air Force Research Laboratory, AFRL/RQHFWright-Patterson AFBUSA
  2. 2.U.S. Air Force Office of Scientific Research, AFOSR/RTEArlington AFBUSA
  3. 3.Graduate Aerospace LaboratoriesCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations