Advertisement

Experiments in Fluids

, 58:11 | Cite as

Digital holographic measurement of the Lagrangian evaporation rate of droplets dispersing in a homogeneous isotropic turbulence

  • J. L. Marié
  • T. Tronchin
  • N. Grosjean
  • L. Méès
  • O. Can Öztürk
  • C. Fournier
  • B. Barbier
  • M. Lance
Research Article

Abstract

The evaporation rate of diethyl ether droplets dispersing in a homogeneous, nearly isotropic turbulence is measured by following droplets along their trajectory. Measurements are performed at ambient temperature and pressure by using in-line digital holography. The holograms of droplets are recorded with a single high-speed camera (3 kHz), and droplets trajectories are reconstructed with an “inverse problem approach” (IPA) algorithm previously used in Chareyron et al. (New J Phys 14:043039, 2012) and Marié et al. (Exp Fluid 55(4):1708, 2014. doi: 10.1007/s00348-014-1708-6). The thermal/vapor concentration wakes developing around the droplets are visible behind each hologram. A standard reconstruction process is applied, showing that these wakes are aligned with the relative Lagrangian velocity seen by droplets at each instant. This relative velocity is that obtained from the dynamic equation of droplets motion and the positions and diameter of the droplets measured by holography and the IPA reconstruction. Sequences of time evolution of droplets 3D positions, diameter and 3D relative velocity are presented. In a number of cases, the evaporation rate of droplets changes along the trajectory and deviates from the value estimated with a standard film model of evaporation. This shows that turbulence may significantly influence the phase change process.

Keywords

Relative Velocity Evaporation Rate Isotropic Turbulence Vapor Film Concentration Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has been funded by the ANR program TEC2 (Turbulence Evaporation and Condensation). The holographic IPA developments have been performed in the frame of the MORIN project (3D Optical Measurements for Research and INdustry) and supported by the “Programme Avenir Lyon Saint-Etienne” of Lyon University in the framework of “investissement d’avenir” (ANR-11-IDEX-0007).

References

  1. Abramzon B, Sirignano WA (1989) Droplet vaporization model for spray combustion calculations. Int J Heat Mass Transf 32(9):1605–1618CrossRefGoogle Scholar
  2. Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New YorkGoogle Scholar
  3. Birouk M, Gökalp I (2006) Current status of droplet evaporation in turbulent flows. Prog Energy Combust Sci 32(4):408–423CrossRefGoogle Scholar
  4. Born M, Wolf E (1980) Principles of optics. Pergamon press, OxfordGoogle Scholar
  5. Charalampous G, Hardalupas Y (2010) Clustering of mono-disperse and poly-disperse particles in a box of turbulence. In: 7th international conference on multiphase flows, TempaGoogle Scholar
  6. Chareyron D, Marié JL, Fournier C, Gire J, Grosjean N, Denis L, Lance M, Méès L (2012) Testing an in-line digital holography “inverse method” for the Lagrangian tracking of evaporating droplets in homogeneous nearly-isotropic turbulence. New J Phys 14:043039CrossRefGoogle Scholar
  7. Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic Press, New YorkGoogle Scholar
  8. Fournier C, Denis L, Thiébaut E, Fournel T, Seifi M (2011) Inverse problems approaches for digital hologram reconstruction. In: Three dimensional imaging, visualization, and display, vol 8043. Orlando, pp 1–14Google Scholar
  9. Gire J, Denis L, Fournier C, Thiébaut E, Soulez F, Ducottet C (2008) Digital holography of particles: benefits of the “inverse-problem“ approach. Meas Sci Technol 19(7):074005CrossRefGoogle Scholar
  10. Goepfert C, Marié JL, Chareyron D, Lance M (2010) Characterization of a system generating a homogeneous isotropic turbulence field by free synthetic jets. Exp Fluid 48(5):809–822CrossRefGoogle Scholar
  11. Gopalan B, Malkiel E, Katz J (2008) Experimental investigation of turbulent diffusion of slightly buoyant droplets in locally isotropic turbulence. Phys Fluid 20(9):095102CrossRefMATHGoogle Scholar
  12. Hwang W, Eaton JK (2004) Creating homogeneous and isotropic turbulence without a mean flow. Exp Fluid 36:444–454CrossRefGoogle Scholar
  13. Katz J, Sheng J (2010) Applications of holography in fluid mechanics and particle dynamics. Annu Rev Fluid Mech 42:531–555CrossRefGoogle Scholar
  14. Knubben G, van der Geld CWM (2001) Drop size distribution evolution after continuous or intermittent injection of butane or propane in a confined air flow. Appl Therm Eng 21:787–811CrossRefGoogle Scholar
  15. Lee ER (2003) Microdrop generation. CRC Press, Boca RatonGoogle Scholar
  16. Lian H, Charalampous G, Hardalupas Y (2013) Preferential concentration of poly-dispersed droplets in stationary isotropic turbulence. Exp Fluid 54:1525. doi: 10.1007/s00348-013-1525-3 CrossRefGoogle Scholar
  17. Lu J, Fugal JP, Nordsiek H, Saw EW, Shaw RA, Yang W (2008) Lagrangian particle tracking in three dimensions via single-camera in-line digital holography. New J Phys 10:125013CrossRefGoogle Scholar
  18. Marié JL, Grosjean N, Méès L, Seifi M, Fournier C, Barbier B, Lance M (2014) Lagrangian measurements of the fast evaporation of falling diethyl ether droplets using in-line digital holography and a high speed camera. Exp Fluid 55(4):1708. doi: 10.1007/s00348-014-1708-6 CrossRefGoogle Scholar
  19. Méès L, Grosjean N, Chareyron D, Marié JL, Seifi M, Fournier C (2013) Evaporating droplet hologram simulation for digital in-line holography setup with divergent beam. J Opt Soc Am A 30(10):2021–2028CrossRefGoogle Scholar
  20. Michaelides EE (2006) Particles, bubbles and drops: their motion, heat and mass transfer. World Scientific, SingaporeCrossRefGoogle Scholar
  21. Nguyen D, Honnery D, Soria J (2011) Measuring evaporation of micro-fuel droplets using magnified DIH and DPIV. Exp Fluid 50(4):949–959CrossRefGoogle Scholar
  22. Pope S (2000) Turbulent flows. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  23. Reveillon J, Demoulin FX (2007) Effects of the preferential segregation of droplets on evaporation and turbulent mixing. J Fluid Mech 583:273–302CrossRefMATHGoogle Scholar
  24. Seifi M, Fournier C, Grosjean N, Méès L, Marié JL, Denis L (2013) Accurate 3D tracking and size measurement of evaporating droplets using in-line digital holography and “inverse problems” reconstruction approach. Opt Express 21(23):27964–27980. doi: 10.1364/OE.21.027964 CrossRefGoogle Scholar
  25. Sirignano WA (2010) Fluid dynamics and transport of droplets and sprays. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. Soulez F, Denis L, Fournier C, Thiébaut E, Goepfert C (2007a) Inverse-problem approach for particle digital holography: accurate location based on local optimization. J Opt Soc Am A 24(4):1164–1171MathSciNetCrossRefGoogle Scholar
  27. Soulez F, Denis L, Thiébaut E, Fournier C, Goepfert C (2007b) Inverse problem approach in particle digital holography: out-of-field particle detection made possible. J Opt Soc Am A 24(12):3708–3716CrossRefGoogle Scholar
  28. Toschi F, Bodenschatz E (2009) Lagrangian properties of particles in turbulence. Annu Rev Fluid Mech 41:375–404MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • J. L. Marié
    • 1
  • T. Tronchin
    • 1
  • N. Grosjean
    • 1
  • L. Méès
    • 1
  • O. Can Öztürk
    • 1
  • C. Fournier
    • 2
  • B. Barbier
    • 1
  • M. Lance
    • 1
  1. 1.Laboratoire de Mécanique des Fluides et d’Acoustique UMR CNRS 5509, Ecole Centrale de LyonUniversité Claude Bernard Lyon 1, INSA LyonEcully CedexFrance
  2. 2.Laboratoire Hubert Curien UMR CNRS 5516Université Jean MonnetSt. EtienneFrance

Personalised recommendations