Advertisement

Experiments in Fluids

, 57:163 | Cite as

Surface topography measurements of the bouncing droplet experiment

  • Adam P. Damiano
  • P.-T. Brun
  • Daniel M. Harris
  • Carlos A. Galeano-Rios
  • John W. M. Bush
Research Article

Abstract

A free-surface synthetic Schlieren (Moisy et al. in Exp Fluids 46:1021–1036, 2009; Eddi et al. in J Fluid Mech 674:433–463, 2011) technique has been implemented in order to measure the surface topography generated by a droplet bouncing on a vibrating fluid bath. This method was used to capture the wave fields of bouncers, walkers, and walkers interacting with boundaries. These wave profiles are compared with existing theoretical models and simulations and will prove valuable in guiding their future development. Specifically, the method provides insight into what type of boundary conditions apply to the wave field when a bouncing droplet approaches a submerged obstacle.

Keywords

Wave Field Digital Image Correlation Background Image Wave Profile Fluid Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

348_2016_2251_MOESM1_ESM.avi (19.7 mb)
Supplementary material 1 (avi 20165 KB)
348_2016_2251_MOESM2_ESM.avi (6.4 mb)
Supplementary material 2 (avi 6561 KB)
348_2016_2251_MOESM3_ESM.avi (9 mb)
Supplementary material 3 (avi 9219 KB)
348_2016_2251_MOESM4_ESM.pdf (2.9 mb)
Supplementary material 4 (pdf 3004 KB)
348_2016_2251_MOESM5_ESM.mp4 (970 kb)
Supplementary material 5 (mp4 969 KB)

References

  1. Blanchette F (2016) Modeling the vertical motion of drops bouncing on a bounded fluid reservoir. Phys Fluids (1994-Present) 28(3):032104MathSciNetCrossRefGoogle Scholar
  2. Bush JWM (2010) Quantum mechanics writ large. Proc Natl Acad Sci 107:17455–17456MathSciNetCrossRefMATHGoogle Scholar
  3. Bush JWM (2015) Pilot-wave hydrodynamics. Annu Rev Fluid Mech 47:269–292CrossRefGoogle Scholar
  4. Bush JWM (2015) The new wave of pilot-wave theory. Phys Today 68(8):47MathSciNetCrossRefGoogle Scholar
  5. Couder Y, Fort E, Gautier C-H, Boudaoud A (2005) From bouncing to floating: noncoalescence of drops on a fluid bath. Phys Rev Lett 94:177801CrossRefGoogle Scholar
  6. Couder Y, Protière S, Fort E, Boudaoud A (2005) Walking and orbiting droplets. Nature 437:208CrossRefGoogle Scholar
  7. Couder Y, Fort E (2006) Single-particle diffraction and interference at a macroscopic scale. Phys Rev Lett 97:154101CrossRefGoogle Scholar
  8. Dubertrand R, Hubert M, Schlagheck P, Vandewalle N, Bastin T, Martin J (May 2016) Scattering theory of walking droplets in the presence of obstacles. ArXiv e-printsGoogle Scholar
  9. Eddi A, Fort E, Moisy F, Couder Y (2009) Unpredictable tunneling of a classical wave-particle association. Phys Rev Lett 102:240401CrossRefGoogle Scholar
  10. Eddi A, Sultan E, Moukhtar J, Fort E, Rossi M, Couder Y (2011) Information stored in Faraday waves: the origin of a path memory. J Fluid Mech 674:433–463 MathSciNetCrossRefMATHGoogle Scholar
  11. Faraday M (1831) On a peculiar class of acoustical figures: and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Philos Trans R Soc Lond 121:299–340CrossRefGoogle Scholar
  12. Faria LM (2016) A model for Faraday pilot-waves over variable topography. Private communicationGoogle Scholar
  13. Fort E, Eddi A, Boudaoud A, Moukhtar J, Couder Y (2010) Path-memory induced quantization of classical orbits. Proc Natl Acad Sci 107(41):17515–17520CrossRefGoogle Scholar
  14. Gilet T (2016) Quantumlike statistics of deterministic wave-particle interactions in a circular cavity. Phys Rev E 93(4):042202CrossRefGoogle Scholar
  15. Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  16. Harris DM, Liu T, Bush JWM (2015) A low-cost, precise piezoelectric droplet-on-demand generator. Exp Fluids 56(4):83CrossRefGoogle Scholar
  17. Harris DM (2015) The pilot-wave dynamics of walking droplets in confinement. PhD thesis, Massachussets Institute of TechnologyGoogle Scholar
  18. Harris DM, Moukhtar J, Fort E, Couder Y, Bush JWM (2013) Wavelike statistics from pilot-wave dynamics in a circular corral. Phys Rev E 88:011001CrossRefGoogle Scholar
  19. Harris DM, Bush JWM (2014) Droplets walking in a rotating frame. J Fluid Mech 739:444–464CrossRefGoogle Scholar
  20. Harris DM, Bush JWM (2015) Generating uniaxial vibration with an electrodynamic shaker and external air bearing. J Sound Vib 334:255–269CrossRefGoogle Scholar
  21. Labousse M (2014) Investigation of a path-memory dynamics: a theoretical trial. Université Pierre et Marie Curie UPMC Paris VI, ThesesGoogle Scholar
  22. Milewski PA, Galeano-Rios CA, Nachbin A, Bush JWM (2015) Farady pilot-wave dynamics. J Fluid Mech 778:361–388MathSciNetCrossRefMATHGoogle Scholar
  23. Moisy F, Rabaud M, Salsac K (2009) A synthetic schlieren method for the measurement of the topography of a liquid interface. Exp Fluids 46:1021–1036CrossRefGoogle Scholar
  24. Molácek J, Bush WM (2012) A quasi-static model of drop impact. Phys Fluids 24:127103CrossRefMATHGoogle Scholar
  25. Molácek J, Bush WM (2013a) Drops bouncing on a vibrating bath. J Fluid Mech 727:582–611CrossRefMATHGoogle Scholar
  26. Molácek J, Bush WM (2013b) Drops walking on a vibrating bath: towards a hydrodynamic pilot-wave theory. J Fluid Mech 727:612–647CrossRefMATHGoogle Scholar
  27. Oza AU, Rosales RR, Bush JWM (2013) A trajectory equation for walking droplets. J Fluid Mech 737:552–570MathSciNetCrossRefMATHGoogle Scholar
  28. Oza AU, Harris DM, Rosales RR, Bush JWM (2014) Pilot-wave dynamics in a rotating frame. J Fluid Mech 744:404–429CrossRefMATHGoogle Scholar
  29. Perrard S, Labousse M, Fort E, Couder Y (2014a) Chaos driven by interfering memory. Phys Rev Lett 113(10):104101CrossRefGoogle Scholar
  30. Perrard S, Labousse M, Miskin M, Fort E, Couder Y (2014b) Self-organization into quantized eigenstates of a classical wave-driven particle. Nat Commun 5:3219CrossRefGoogle Scholar
  31. Protière S, Boudaoud A, Couder Y (2006) Particle-wave association on a fluid interface. J Fluid Mech 554:85–108MathSciNetCrossRefMATHGoogle Scholar
  32. Pucci G, Sáenz PJ, Faria LM, Bush JW (2016) Non-specular reflection of walking droplets. J Fluid Mech 804:R3MathSciNetCrossRefGoogle Scholar
  33. Terwagne D, Vandewalle N, Dorbolo S (2007) Lifetime of a bouncing droplet. Phys Rev E 76:056311CrossRefGoogle Scholar
  34. Vandewalle N, Terwagne D, Mulleners K, Gilet T, Dorbolo S (2006) Dancing droplets onto liquid surfaces. Phys Fluids 18:091106CrossRefGoogle Scholar
  35. Walker J (1978) Drops of liquid can be made to float on the liquid. What enables them to do so? Sci Am 238:151–158CrossRefGoogle Scholar
  36. Wind-Willassen Ø, Molàcek J, Harris DM, Bush JWM (2013) Exotic states of bouncing and walking droplets. Phys Fluids 25:082002CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.MITCambridgeUSA
  2. 2.IMPA/National Institute of Pure and Applied MathematicsRio de JaneiroBrazil
  3. 3.Department of Mathematical SciencesUniversity of BathBathUK

Personalised recommendations