Advertisement

Experiments in Fluids

, 57:162 | Cite as

X-ray fluorescence measurements of dissolved gas and cavitation

  • Daniel J. Duke
  • Alan L. Kastengren
  • Andrew B. Swantek
  • Katarzyna E. Matusik
  • Christopher F. Powell
Research Article

Abstract

The dynamics of dissolved gas and cavitation are strongly coupled, yet these phenomena are difficult to measure in-situ. Both create voids in the fluid that can be difficult to distinguish. We present an application of X-ray fluorescence in which liquid density and total noncondensible gas concentration (both dissolved and nucleated) are simultaneously measured. The liquid phase is doped with 400 ppm of a bromine tracer, and dissolved air is removed and substituted with krypton. Fluorescent emission at X-ray wavelengths is simultaneously excited from the Br and Kr with a focused monochromatic X-ray beam from a synchrotron source. We measure the flow in a cavitating nozzle 0.5 mm in diameter. From Br fluorescence, total displacement of the liquid is measured. From Kr fluorescence, the mass fraction of both dissolved and nucleated gas is measured. Volumetric displacement of liquid due to both cavitation and gas precipitation can be separated through estimation of the local equilibrium dissolved mass fraction. The uncertainty in the line of sight projected densities of the liquid and gas phases is 4–6 %. The high fluorescence yields and energies of Br and Kr allow small mass fractions of gas to be measured, down to 10−5, with an uncertainty of 8 %. These quantitative measurements complement existing optical diagnostic techniques and provide new insight into the diffusion of gas into cavitation bubbles, which can increase their internal density, pressure and lifetimes by orders of magnitude.

Keywords

Cavitation Nozzle Wall Projected Density CBr4 Vapor Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was performed at the 7-BM beam line of the APS at Argonne National Laboratory. Use of the APS is supported by the US Department of Energy (DOE) under Contract No. DE-AC02-06CH11357. Argonne’s fuel injection research is sponsored by the DOE Vehicle Technologies Program under the direction of Gurpreet Singh and Leo Breton.

References

  1. Als-Nielsen J, McMorrow D (2011) Elements of modern X-ray physics. Als-Nielsen/elements. Wiley, HobokenCrossRefGoogle Scholar
  2. Arcoumanis C, Badami M, Flora H (2000) Cavitation in real-size multi-hole diesel injector nozzles. SAE Paper. 2000-01-1249Google Scholar
  3. Badock C, Wirth R, Fath A, Leipertz A (1999) Investigation of cavitation in real size diesel injection nozzles. Int J Heat Fluid Flow 20(5):538–544CrossRefGoogle Scholar
  4. Battino R, Rettich TR, Tominaga T (1984) The solubility of nitrogen and air in liquids. J Phys Chem Ref Data 13(2):563–600CrossRefGoogle Scholar
  5. Battistoni M, Duke DJ, Swantek AB, Tilocco FZ, Powell CF, Som S (2015) Effects of noncondensable gas on cavitating nozzles. Atom Sprays 25(6):453–483CrossRefGoogle Scholar
  6. Bearden JA (1967) X-ray wavelengths. Rev Mod Phys 39:78. doi: 10.1103/RevModPhys.39.78 CrossRefGoogle Scholar
  7. Bearden JA, Burr AF (1967) Reevaluation of X-ray atomic energy levels. Rev Mod Phys 39:125. doi: 10.1103/RevModPhys.39.125 CrossRefGoogle Scholar
  8. Beckhoff B, Kanngiesser B, Langhoff N, Wedell R, Wolff H (2006) Handbook of practical X-ray fluorescence analysis. Springer, BerlinCrossRefGoogle Scholar
  9. Borland M, Sajaev V, Sun Y (2015) Hybrid seven-bend-achromat lattice for the advanced photon source upgrade. In: Proceedings of the IPAC2015 international particle accelerator conference, Richmond, VA, USAGoogle Scholar
  10. Butcher AJ, Aleiferis PG, Richardson D (2013) Development of a real-size optical injector nozzle for studies of cavitation, spray formation and flash-boiling at conditions relevant to direct-injection spark-ignition engines. Int J Engine Res 14(6):557–577CrossRefGoogle Scholar
  11. Chaves H, Knapp M, Kubitzek A (1995) Experimental study of cavitation in the nozzle hole of diesel injectors using transparent nozzles. SAE technical paper 950290, pp 199–211Google Scholar
  12. Clever HL, Battino R, Saylor JH, Gross PM (1957) The solubility of helium, neon, argon and krypton in some hydrocarbon solvents. J Phys Chem 61(8):1078–1082CrossRefGoogle Scholar
  13. Duke DJ, Kastengren AL, Mason-Smith N, Chen Y, Young PM, Traini D et al (2016) Temporally and spatially resolved X-ray fluorescence measurements of in-situ drug concentration in metered-dose inhaler sprays. Pharm Res 33:816–825CrossRefGoogle Scholar
  14. Duke DJ, Kastengren AL, Tilocco F, Swantek AB, Powell C (2013) X-ray radiography measurements of cavitating nozzle flow. Atom Sprays 23(9):841–860CrossRefGoogle Scholar
  15. Duke DJ, Schmidt DP, Neroorkar K, Kastengren AL, Powell CF (2013) High-resolution large eddy simulations of cavitating gasoline–ethanol blends. Int J Engine Res 14(6):578–589CrossRefGoogle Scholar
  16. Duke DJ, Swantek A, Kastengren A, Fezzaa K, Powell C (2015) Recent developments in X-ray diagnostics for cavitation. SAE Int J Fuels Lubr 8(1):135–146CrossRefGoogle Scholar
  17. Duke DJ, Swantek AB, Kastengren AL, Powell CF (2015) X-ray diagnostics for cavitating nozzle flow. J Phys Conf Ser 656:012110–012115CrossRefGoogle Scholar
  18. Duke DJ, Swantek A, Tilocco Z, Kastengren A, Fezzaa K, Neroorkar K et al (2014) X-ray imaging of cavitation in diesel injectors. SAE Int J Engines 7(2):1003–1016CrossRefGoogle Scholar
  19. Duke DJ, Swantek AB, Matusik KE, Powell CF, Kastengren AL, Viera JP, et al (2016) X-ray radiography measurements and numerical simulations of cavitation in a metal nozzle. In: Proceedings of the ILASS-Americas 28th Annual conference on liquid atomization and spray systems, Dearborn, MI, USAGoogle Scholar
  20. Duke DJ, Kastengren AL, Tilocco FZ, Powell CF (2013) Synchrotron X-ray measurements of cavitation . In: Proceedings of the ILASS-Americas 25th annual conference on liquid atomization and spray systems, Pittsburgh, PAGoogle Scholar
  21. Dunnmon J, Sobhani S, Kim TW, Kovscek A, Ihme M (2016) Characterization of scalar mixing in dense gaseous jets using X-ray computed tomography. Exp Fluids 56:193CrossRefGoogle Scholar
  22. Epstein PS, Plesset MS (1950) On the stability of gas bubbles in liquid–gas solutions. J Chem Phys 18(11):1505–1506CrossRefGoogle Scholar
  23. Falgout Z, Linne M (2015) Cavitation inside high-pressure optically transparent fuel injector nozzles. J Phys Conf Ser 656:012082–012085CrossRefGoogle Scholar
  24. Fansler TD, Parrish SE (2014) Spray measurement technology: a review. Meas Sci Technol 26(1):1–34. doi: 10.1088/0957-0233/26/1/012002 Google Scholar
  25. Frank JH, Shavorskiy A, Bluhm H, Coriton B, Huang E, Osborn DL (2014) In situ soft X-ray absorption spectroscopy of flames. Appl Phys B 117(1):493–499CrossRefGoogle Scholar
  26. Freudigmann HA, Iben U, Pelz PF (2015) Air release measurements of V-oil 1404 downstream of a micro orifice at choked flow conditions. J Phys Conf Ser 656(1):012113CrossRefGoogle Scholar
  27. Gord JR, Buckner SW, Weaver WL (1995) Dissolved oxygen quantitation in fuel through measurements of dynamically quenched fluorescence lifetimes. IEEEGoogle Scholar
  28. Halls BR, Meyer TR, Kastengren AL (2015) Quantitative measurement of binary liquid distributions using multiple-tracer X-ray fluorescence and radiography. Opt Express 23(2):1730–1739CrossRefGoogle Scholar
  29. Halls BR, Gord JR, Meyer TR, Thul DJ, Slipchenko M, Roy S (2016) 20-kHz-rate three-dimensional tomographic imaging of the concentration field in a turbulent jet. Proc Combust Inst. doi: 10.1016/j.proci.2016.07.007 Google Scholar
  30. Henke BL, Gullikson EM, Davis JC (1993) X-ray interactions: photoabsorption, scattering, transmission, and reflection at \(E=50-30000\) eV, \(Z=1-92\). At Data Nucl Data Tables 54(2):181–342CrossRefGoogle Scholar
  31. Herlina H, Jirka GH (2004) Application of LIF to investigate gas transfer near the air–water interface in a grid-stirred tank. Exp Fluids 37(3):1–9CrossRefGoogle Scholar
  32. Hubbell JH, Trehan PN, Singh N, Chand B, Mehta D, Garg ML et al (1994) A review, bibliography, and tabulation of K, L, and higher atomic shell X-ray fluorescence yields. J Phys Chem Ref Data 23(2):339–364CrossRefGoogle Scholar
  33. Iben U, Wolf F, Freudigmann HA, Fröhlich J, Heller W (2015) Optical measurements of gas bubbles in oil behind a cavitating micro-orifice flow. Exp Fluids 56(6):1–10CrossRefGoogle Scholar
  34. Ikels KG (1970) Production of gas bubbles in fluids by tribonucleation. J Appl Physiol 28(4):524–527Google Scholar
  35. Kang BK, Kim MS, Park JG (2014) Effect of dissolved gases in water on acoustic cavitation and bubble growth rate in 0.83MHz megasonic of interest to wafer cleaning. Ultrason Sonochem 21(4):1496–1503CrossRefGoogle Scholar
  36. Kastengren A, Powell CF (2014) Synchrotron X-ray techniques for fluid dynamics. Exp Fluids 55(3):1686CrossRefGoogle Scholar
  37. Kastengren AL, Powell CF, Dufresne EM, Walko DA (2011) Application of X-ray fluorescence to turbulent mixing. J Synchrotron Radiat 18:811–815. doi: 10.1107/S0909049511024435 CrossRefGoogle Scholar
  38. Kastengren A, Powell CF, Arms D, Dufresne EM, Gibson H, Wang J (2012) The 7BM beamline at the APS: a facility for time-resolved fluid dynamics measurements. J Synchrotron Radiat 19(4):654–657CrossRefGoogle Scholar
  39. Lee I, Mäkiharju SA, Ganesh H, Ceccio SL (2016) Scaling of gas diffusion into limited partial cavities. J Fluids Eng 138(5):051301–051309CrossRefGoogle Scholar
  40. Mastikhin IV, Arbabi A, Newling B, Hamza A, Adair A (2011) Magnetic resonance imaging of velocity fields, the void fraction and gas dynamics in a cavitating liquid. Exp Fluids 52(1):95–104CrossRefGoogle Scholar
  41. Mäkiharju SA, Gabillet C, Paik BG, Chang NA, Perlin M, Ceccio SL (2013) Time-resolved two-dimensional X-ray densitometry of a two-phase flow downstream of a ventilated cavity. Exp Fluids 54:1561CrossRefGoogle Scholar
  42. Peters F, Honza R (2014) A benchmark experiment on gas cavitation. Exp Fluids 55:1786CrossRefGoogle Scholar
  43. Rooze J, Rebrov EV, Schouten JC, Keurentjes JTF (2013) Dissolved gas and ultrasonic cavitation—a review. Ultrason Sonochem 20(1):1–11CrossRefGoogle Scholar
  44. Rousseau RM (2006) Corrections for matrix effects in X-ray fluorescence analysis—a tutorial. Spectrochim Acta Part B At Spectrosc 61(7):759–777CrossRefGoogle Scholar
  45. Schmidt D, Corradini ML (1997) Analytical prediction of the exit flow of cavitating orifices. Atom Sprays 7:603–616CrossRefGoogle Scholar
  46. Schmidt DP, Corradini ML (2001) The internal flow of diesel fuel injector nozzles: a review. Int J Engine Res 2(1):1–22CrossRefGoogle Scholar
  47. Schmidt DP, Rutland CJ, Corradini ML, Roosen P (1999) Cavitation in two-dimensional asymmetric nozzles. SAE transactions. Paper no. 1999-01-0518Google Scholar
  48. Stöhr M, Schanze J, Khalili A (2009) Visualization of gas–liquid mass transfer and wake structure of rising bubbles using pH-sensitive PLIF. Exp Fluids 47(1):135–143CrossRefGoogle Scholar
  49. Tocci E, Hofmann D, Paul D, Russo N, Drioli E (2001) A molecular simulation study on gas diffusion in a dense poly (ether–ether–ketone) membrane. Polymer 42:521–533CrossRefGoogle Scholar
  50. Walker JW, Peirson WL (2007) Measurement of gas transfer across wind-forced wavy air–water interfaces using laser-induced fluorescence. Exp Fluids 44(2):249–259CrossRefGoogle Scholar
  51. Walko DA, Arms DA, Miceli A, Kastengren AL (2011) Empirical dead-time corrections for energy-resolving detectors at synchrotron sources. Nucl Inst Methods Phys Res A 649(1):81–83CrossRefGoogle Scholar
  52. Yanagida H (2008) The effect of dissolve gas concentration in the initial growth stage of multi cavitation bubbles. Ultrason Sonochem 15(4):492–496MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2016

Authors and Affiliations

  • Daniel J. Duke
    • 1
  • Alan L. Kastengren
    • 2
  • Andrew B. Swantek
    • 1
  • Katarzyna E. Matusik
    • 1
  • Christopher F. Powell
    • 1
  1. 1.Energy Systems DivisionArgonne National LaboratoryLemontUSA
  2. 2.X-Ray Science DivisionArgonne National LaboratoryLemontUSA

Personalised recommendations