Experiments in Fluids

, 57:160 | Cite as

In-flight active wave cancelation with delayed-x-LMS control algorithm in a laminar boundary layer

  • Bernhard SimonEmail author
  • Nicolò Fabbiane
  • Timotheus Nemitz
  • Shervin Bagheri
  • Dan S. Henningson
  • Sven Grundmann
Research Article


This manuscript demonstrates the first successful application of the delayed-x-LMS (dxLMS) control algorithm for TS-wave cancelation. Active wave cancelation of two-dimensional broadband Tollmien–Schlichting (TS) disturbances is performed with a single DBD plasma actuator. The experiments are conducted in flight on the pressure side of a laminar flow wing glove, mounted on a manned glider. The stability properties of the controller are investigated in detail with experimental flight data, DNS and stability analysis of the boundary layer. Finally, a model-free approach for dxLMS operation is introduced to operate the controller as a ‘black-box’ system, which automatically adjusts the controller settings based on a group speed measurement of the disturbance wave packets. The modified dxLMS controller is operated without a model and is able to adapt to varying conditions that may occur during flight in atmosphere.


Direct Numerical Simulation Little Mean Square Laminar Boundary Layer Flight Speed Finite Impulse Response Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the German research foundation (DFG) under the Grant No.GR3524/4-1. Simulations have been performed at the National Supercomputer Centre (NSC) with computer time granted by the Swedish National Infrastructure for Computing (SNIC). We also wish to thank Jens Rohlfing from Fraunhofer LBF (Darmstadt) for the fruitful discussions. Finally we appreciate the support of our student and flight test pilot Tobias Hofmann.


  1. Bagheri S, Brandt L, Henningson DS (2009) Input-output analysis, model reduction and control of the flat-plate boundary layer. J Fluid Mech 620(1):263–298MathSciNetCrossRefzbMATHGoogle Scholar
  2. Brynjell-Rahkola M (2015) Global stability analysis of three-dimensional boundary-layer flows. Lic. thesis, KTH, StockholmGoogle Scholar
  3. Dadfar R, Semeraro O, Hanifi A, Henningson DS (2013) Output feedback control of flow on a flat plate past a leading edge using plasma actuators. AIAA J 51(9):2192–2207CrossRefGoogle Scholar
  4. Duchmann A (2012) Boundary-layer stabilization with dielectric barrier discharge plasmas for free-flight application. Ph.D. thesis, TU DarmstadtGoogle Scholar
  5. Duchmann A, Simon B, Tropea C, Grundmann S (2014) Dielectric barrier discharge plasma actuators for in-flight transition delay. AIAA J 52(2):358–367CrossRefGoogle Scholar
  6. Elliott S, Nelson P (1993) Active noise control. Signal Process Mag IEEE 10(4):12–35CrossRefGoogle Scholar
  7. Fabbiane N, Simon B, Fischer F, Grundmann S, Bagheri S, Henningson DS (2015) On the role of adaptivity for Robust Laminar-flow control. J Fluid Mech 767:R1CrossRefGoogle Scholar
  8. Fischer PF, Lottes JS, Kerkemeier SG (2008) Nek5000 - open source spectral element cfd solver.
  9. Grundmann S, Tropea C (2008) Active cancellation of artificially introduced Tollmien–Schlichting waves using plasma actuators. Exp Fluid 44(5):795–806CrossRefGoogle Scholar
  10. Gad-el Hak M (2000) Flow control: passive, active, and reactive flow management. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  11. Hansen C, Snyder S (1996) Active control of noise and vibration. CRC Press, Boca RatonGoogle Scholar
  12. Joslin R (1998) Aircraft laminar flow control 1. Ann Rev Fluid Mech 30(1):1–29CrossRefGoogle Scholar
  13. Juniper MP, Hanifi A, Theofilis V (2014) Modal stability theorylecture notes from the FLOW-NORDITA summer school on advanced instability methods for complex flows, Stockholm, Sweden, 2013. Appl Mech Rev 66(2):024804CrossRefGoogle Scholar
  14. Kim HS, Park Y (1998) Delayed-x lms algorithm: an efficient ANC algorithm utilizing robustness of cancellation path model. J Sound Vib 212(5):875–887CrossRefGoogle Scholar
  15. Kotsonis M, Giepman R, Hulshoff S, Veldhuis L (2013) Numerical study of the control of Tollmien-Schlichting waves using plasma actuators. AIAA J 51(10):2353–2364CrossRefGoogle Scholar
  16. Kotsonis M, Shukla RK, Pröbsting S (2015) Control of natural Tollmien-Schlichting waves using dielectric barrier discharge plasma actuators. Int J Flow Control 7(1–2):37–54CrossRefGoogle Scholar
  17. Kriegseis J, Duchmann A, Tropea C, Grundmann S (2013) On the classification of dielectric barrier discharge plasma actuators: a comprehensive performance evaluation study. J Appl Phy 114(5):053,301CrossRefGoogle Scholar
  18. Kriegseis J, Schwarz C, Tropea C, Grundmann S (2013) Velocity-information-based force-term estimation of dielectric-barrier discharge plasma actuators. J Phy D Appl Phy 46(5):055,202CrossRefGoogle Scholar
  19. Kriegseis J, Simon B, Grundmann S (2016) Towards in- fight applications? A review on dielectric barrier discharge-based boundary-layer control. Appl Mech Rev 68(2)Google Scholar
  20. Kuo SM, Morgan D (1995) Active noise control systems: algorithms and DSP implementations. Wiley, HobokenGoogle Scholar
  21. Kurz A, Goldin N, King R, Tropea C, Grundmann S (2013) Hybrid transition control approach for plasma actuators. Exp Fluid 54(11):1–4CrossRefGoogle Scholar
  22. Kurz A, Simon B, Tropea C, Grundmann S (2014) Active wave cancelation using plasma actuators in flight. In: 52nd Aerospace Sciences Meeting, AIAA SciTech. American Institute of Aeronautics and AstronauticsGoogle Scholar
  23. Li Y, Gaster M (2006) Active control of boundary-layer instabilities. J Fluid Mech 550:185–206CrossRefzbMATHGoogle Scholar
  24. Liepmann H, Brown G, Nosenchuck D (1982) Control of laminar-instability waves using a new technique. J Fluid Mech 118:187–200CrossRefGoogle Scholar
  25. Liepmann H, Nosenchuck D (1982) Active control of laminar-turbulent transition. J Fluid Mech 118:201–204CrossRefGoogle Scholar
  26. Milling RW (1981) Tollmien–schlichting wave cancellation. Phy Fluid (1958–1988) 24(5):979–981CrossRefGoogle Scholar
  27. Morino L, Kuot CC (1974) Subsonic potential aerodynamics for complex configurations: a general theory. AIAA J 12(2):191–197CrossRefzbMATHGoogle Scholar
  28. Patera AT (1984) A spectral element method for fluid dynamics: laminar flow in a channel expansion. J Comp Phy 54(3):468–488MathSciNetCrossRefzbMATHGoogle Scholar
  29. Peltzer I, Pätzold A, Nitsche W (2009) In-flight experiments for delaying laminar—turbulent transition on a laminar wing glove. Proc Inst Mech Eng Part G J Aerosp Eng 223(6):619–626CrossRefGoogle Scholar
  30. Reeh AD (2014) Natural laminar flow airfoil behavior in cruise flight through atmospheric turbulence. Ph.D. thesis, TU DarmstadtGoogle Scholar
  31. Reeh AD, Tropea C (2015) Behaviour of a natural laminar flow aerofoil in flight through atmospheric turbulence. J Fluid Mech 767:394–429MathSciNetCrossRefGoogle Scholar
  32. Saric WS, Reed HL, Kerschen EJ (2002) Boundary-layer receptivity to freestream disturbances. Ann Rev Fluid Mech 34(1):291–319MathSciNetCrossRefzbMATHGoogle Scholar
  33. Semeraro O, Bagheri S, Brandt L, Henningson DS (2013) Transition delay in a boundary layer flow using active control. J Fluid Mech 731(9):288–311CrossRefzbMATHGoogle Scholar
  34. Simon B, Nemitz T, Rohlfing J, Fischer F, Mayer D, Grundmann S (2015) Active flow control of laminar boundary layers for variable flow conditions. Int J Heat Fluid Flow 56:344–354CrossRefGoogle Scholar
  35. Simon B, Schnabel P, Grundmann S (2016) IR measurements for quantification of laminar boundary layer stabilization with dbd plasma actuators. In: New results in numerical and experimental fluid mechanics X. SpringerGoogle Scholar
  36. Snyder S, Hansen C (1990) The influence of transducer transfer functions and acoustic time delays on the implementation of the LMS algorithm in active noise control systems. J Sound Vib 141(3):409–424CrossRefGoogle Scholar
  37. Sturzebecher D, Nitsche W (2003) Active cancellation of Tollmien–Schlichting instabilities on a wing using multi-channel sensor actuator systems. Int J Heat Fluid Flow 24:572–583CrossRefGoogle Scholar
  38. Thomas AS (1983) The control of boundary-layer transition using a wave-superposition principle. J Fluid Mech 137:233–250CrossRefGoogle Scholar
  39. Wang JJ, Choi KS, Feng LH, Jukes TN, Whalley RD (2013) Recent developments in dbd plasma flow control. Prog Aerosp Sci 62:52–78CrossRefGoogle Scholar
  40. Weismüller (2012) A new approach to aerodynamic performance of aircraft under turbulent atmospheric conditions. Ph.D. Thesis, TU DarmstadtGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Bernhard Simon
    • 1
    Email author
  • Nicolò Fabbiane
    • 2
  • Timotheus Nemitz
    • 1
  • Shervin Bagheri
    • 2
  • Dan S. Henningson
    • 2
  • Sven Grundmann
    • 3
  1. 1.Institute for Fluid Mechanics and AerodynamicsTechnische Universität DarmstadtGriesheimGermany
  2. 2.Linné FLOW Centre, KTH MechanicsStockholmSweden
  3. 3.Department of Fluid MechanicsUniversity of RostockRostockGermany

Personalised recommendations