Experiments in Fluids

, 57:146 | Cite as

On the correspondence between flow structures and convective heat transfer augmentation for multiple jet impingement

Research Article
  • 315 Downloads

Abstract

The correspondence between local fluid flow structures and convective heat transfer is a fundamental aspect that is not yet fully understood for multiple jet impingement. Therefore, flow field and heat transfer experiments are separately performed investigating mutual–jet interactions exposed in a self-gained crossflow. The measurements are taken in two narrow impingement channels with different cross-sectional areas and a single exit design. Hence, a gradually increased crossflow momentum is developed from the spent air of the upstream jets. Particle image velocimetry (PIV) and liquid crystal thermography (LCT) are used in order to investigate the aerothermal characteristics of the channel with high spatial resolution. The PIV measurements are taken at planes normal to the target wall and along the centreline of the jets, providing quantitative flow visualisation of jet and crossflow interactions. Spatially resolved heat transfer coefficient distributions on the target plate are evaluated with transient techniques and a multi-layer of thermochromic liquid crystals. The results are analysed aiming to provide a better understanding about the impact of near-wall flow structures on the convective heat transfer augmentation for these complex flow phenomena.

List of symbols

C

Regression coefficient

\(C_\mathrm{D}\)

Discharge coefficient

D

Jet diameter (m)

G

Mass velocity (kg/(m\(^2\) s))

h

Heat transfer coefficient (W/(m\(^2\) K))

L

Length of impingement hole (m)

m

Exponent of Reynolds number

Nu

Nusselt number

n

POD mode number

Q

Vortex identification criterion

Re

Reynolds number

S

Dispersion coefficient

U

Velocity (m/s)

\(u',w'\)

Fluctuating velocities (m/s)

u

Streamwise velocity component (m/s)

w

Vertical velocity component (m/s)

xyz

Coordinate system

X

Streamwise jet spacing (m)

Y

Channel width/spanwise jet spacing (m)

Z

Separation distance (m)

Subscripts

cf

Crossflow

D

Jet diameter

j

Jet

\(\infty \)

Free stream conditions

max

Maximum value

Abbreviations

LCT

Liquid crystal thermography

PIV

Particle image velocimetry

POD

Proper orthogonal decomposition

TLC

Thermochromic liquid crystals

VC

Vortex centre

References

  1. Angioletti M, Di Tommaso RM, Nino E, Ruocco G (2003) Simultaneous visualization of flow field and evaluation of local heat transfer by transitional impinging jets. Int J Heat Mass Transf 46(10):1703–1713CrossRefGoogle Scholar
  2. Baughn JW, Shimizu S (1989) Heat transfer measurements from a surface with uniform heat flux and an impinging jet. J Heat Transf 111(4):1096–1098CrossRefGoogle Scholar
  3. Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25(1):539–575MathSciNetCrossRefGoogle Scholar
  4. Caggese O, Gnaegi G, Hannema G, Terzis A, Ott P (2013) Experimental and numerical investigation of a fully confined impingement round jet. Int J Heat Mass Transf 65:873–882CrossRefGoogle Scholar
  5. Dano BPE, Liburdy JA, Kanokjaruvijit K (2005) Flow characteristics and heat transfer performances of a semi-confined impinging array of jets: effect of nozzle geometry. Int J Heat Mass Transf 48(3–4):691–701CrossRefGoogle Scholar
  6. Dubief Y, Delcayre F (2011) On coherent-vortex identification in turbulence. J Turbul 1:N11MathSciNetCrossRefMATHGoogle Scholar
  7. Florschuetz LW, Isoda Y (1983) Flow distributions and discharge coefficient effects for jet array impingement with initial crossflow. J Eng Power 105(2):296–304CrossRefGoogle Scholar
  8. Florschuetz LW, Truman CR, Metzger DE (1981) Streamwise flow and heat transfer distributions for jet array impingement with crossflow. Am Soc Mech Eng 103(2):337–342Google Scholar
  9. Geers LFG, Hanjalić K, Tummers MJ (2006) Wall imprint of turbulent structures and heat transfer in multiple impinging jet arrays. J Fluid Mech 546(–1):255–284MATHGoogle Scholar
  10. Geers LFG, Tummers MJ, Hanjalic K (2004) Experimental investigation of impinging jet arrays. Exp Fluids 36(6):946–958CrossRefGoogle Scholar
  11. Geers LFG, Tummers MJ, Hanjalić K (2005) Particle imaging velocimetry-based identification of coherent structures in normally impinging multiple jets. Phys Fluids (1994-present) 17(5):055–105MATHGoogle Scholar
  12. Ghahremanian S, Svensson K, Tummers MJ, Moshfegh B (2014) Near-field development of a row of round jets at low Reynolds numbers. Exp Fluids 55(8):1–18CrossRefGoogle Scholar
  13. Gorin AV (2008) Turbulent separated flows: near-wall behavior and heat and mass transfer. J Appl Fluid Mech 1(1):71–77MathSciNetGoogle Scholar
  14. Gorin AV (2011) On asymptotic laws and transfer processes enhancement in complex turbulent flows. In: World Academy of Science, Engineering and Technology, pp 700–106Google Scholar
  15. Hossain J, Tran LV, Kapat JS, Fernandez E, Kumar R (2014) An experimental study of detailed flow and heat transfer analysis in a single row narrow impingement channel. In: ASME Turbo Expo 2014: turbine technical conference and exposition, American Society of Mechanical Engineers, Düsseldorf, Germany, June 16- 20, 2014Google Scholar
  16. Hubble D, Vlachos PP, Diller TE (2013) The role of large-scale vortical structures in transient convective heat transfer augmentation. J Fluid Mech 718:89–115CrossRefMATHGoogle Scholar
  17. Hunt JCR, Wray AA, Moin P (1988) Eddies, streams, and convergence zones in turbulent flows. In: Proceedings of the 1988 summer program NASA Ames/Stanford University, Center for Turbulence Research, Stanford, CA, pp 193–208Google Scholar
  18. Ichikawa Y, Motosuke M, Kameya Y, Yamamoto M, Honami S (2016) Three-dimensional flow characterization of a square array of multiple circular impinging jets using stereoscopic PIV and heat transfer relation. J Vis 19(1):89–101CrossRefGoogle Scholar
  19. Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94MathSciNetCrossRefMATHGoogle Scholar
  20. Katti V, Prabhu SV (2008) Experimental study and theoretical analysis of local heat transfer distribution between smooth flat surface and impinging air jet from a circular straight pipe nozzle. Int J Heat Mass Transf 51(17–18):4480–4495CrossRefMATHGoogle Scholar
  21. Lazar E, DeBlauw B, Glumac N, Dutton C, Elliot G (2010) A practical approach to PIV uncertainty analysis. In: The AIAA aerodynamic measurement technology and ground testing conference, Chicago, ILGoogle Scholar
  22. Lee J, Lee S-J (2000) The effect of nozzle configuration on stagnation region heat transfer enhancement of axisymmetric jet impingement. Int J Heat Mass Transf 43(18):3497–3509CrossRefGoogle Scholar
  23. Lichtarowicz A, Duggins RK, Markland E (1963) Discharge coefficients for incompressible non-cavitating flow through long orifices. J Mech Eng Sci 7(2):210–219CrossRefGoogle Scholar
  24. Llucià S, Terzis A, Ott P, Cochet M (2015) Heat transfer characteristics of high crossflow impingement channels: Effect of number of holes. Proc Inst Mech Eng Part A J Power Energy 229(5):560–568CrossRefGoogle Scholar
  25. Lytle D, Webb BW (1994) Air jet impingement heat transfer at low nozzle-plate spacings. Int J Heat Mass Transf 37(12):1687–1697CrossRefGoogle Scholar
  26. Matsumoto R, Ishihara I, Toshiaki Y, Keita I, Shinzo K, Senda M (1999) Impingement heat transfer within arrays of circular jets including the effect of crossflow. In: The ASMEJSME thermal engineering joint conference, San Diego, CA USGoogle Scholar
  27. O’Donovan TS, Murray DB (2007) Jet impingement heat transfer—part I: mean and root-mean-square heat transfer and velocity distributions. Int J Heat Mass Transf 50(17–18):3291–3301CrossRefMATHGoogle Scholar
  28. Popiel CO, Trass O (1991) Visualization of a free and impinging round jet. Exp Therm Fluid Sci 4(3):253–264CrossRefGoogle Scholar
  29. Pountney O, Cho G, Lock GD, Owen JM (2012) Solutions of Fourier’s equation appropriate for experiments using thermochromic liquid crystal. Int J Heat Mass Transf 55(21–22):5908–5915CrossRefGoogle Scholar
  30. Praisner TJ, Smith CR (2006) The dynamics of the horseshoe vortex and associated endwall heat transfer—part II: time-mean results. J Turbomach 128(4):755CrossRefGoogle Scholar
  31. Richardson PD (1963) Heat and mass transfer in turbulent separated flows. Chem Eng Sci 18(3):149–155CrossRefGoogle Scholar
  32. Rohlfs W, Haustein HD, Garbrecht O, Kneer R (2012) Insights into the local heat transfer of a submerged impinging jet: influence of local flow acceleration and vortex-wall interaction. Int J Heat Mass Transf 55(25–26):7728–7736CrossRefGoogle Scholar
  33. Schulz S, Brack S, Terzis A, von Wolfersdorf J, Ott P (2016) On the effects of coating thickness in transient heat transfer experiments using thermochromic liquid crystals. Exp Therm Fluid Sci 70:196–207CrossRefGoogle Scholar
  34. Schulz S, Schueren S, von Wolfersdorf J (2014) A particle image velocimetry-based investigation of the flow field in an oblique jet impingement configuration. J Turbomach 136(5):051009CrossRefGoogle Scholar
  35. Sharma AS, McKeon BJ (2013) On coherent structure in wall turbulence. J Fluid Mech 728:196–238MathSciNetCrossRefMATHGoogle Scholar
  36. Terzis A, Bontitsopoulos S, Ott P, von Wolfersdorf J, Kalfas AI (2016) Improved accuracy in jet impingement heat transfer experiments considering the layer thicknesses of a triple thermochromic liquid crystal coating. J Turbomach 138(2):021003CrossRefGoogle Scholar
  37. Terzis A, Ott P, Cochet M, von Wolfersdorf J, Weigand B (2015) Effect of varying jet diameter on the heat transfer distributions of narrow impingement channels. J Turbomach 137(2):021004CrossRefGoogle Scholar
  38. Terzis A, Skourides C, Ott P, von Wolfersdorf J, Weigand B (2016) Aerothermal investigation of a single row divergent narrow impingement channel by particle image velocimetry and liquid crystal thermography. J Turbomach 138(5):051003CrossRefGoogle Scholar
  39. Terzis A, Wagner G, von Wolfersdorf J, Ott P, Weigand B (2014) Hole staggering effect on the cooling performance of narrow impingement channels using the transient liquid crystal technique. J Heat Transf 136(7):071701CrossRefGoogle Scholar
  40. Terzis A, von Wolfersdorf J, Weigand B, Ott P (2012) Thermocouple thermal inertia effects on impingement heat transfer experiments using the transient liquid crystal technique. Meas Sci Technol 23(11):115303CrossRefGoogle Scholar
  41. Terzis A, von Wolfersdorf J, Weigand B, Ott P (2015) A method to visualise near wall fluid flow patterns using locally resolved heat transfer experiments. Exp Therm Fluid Sci 60:223–230CrossRefGoogle Scholar
  42. Uddin N, Neumann SO, Weigand B (2013) LES simulations of an impinging jet: on the origin of the second peak in the Nusselt number distribution. Int J Heat Mass Transf 57(1):356–368CrossRefGoogle Scholar
  43. Uzol O, Camci C (2001) The effect of sample size, turbulence intensity and the velocity field on the experimental accuracy of ensemble averaged PIV measurements. In: 4th international symposium on particle image velocimetry, Göttingen, Germany, 17–19 September 2001Google Scholar
  44. Weigand B, Spring S (2011) Multiple jet impingement—a review. J Heat transf 42(2):101–142Google Scholar
  45. Yang L, Ligrani P, Ren J, Jiang H (2015) Unsteady structure and development of a row of impingement jets, including Kelvin–Helmholtz vortex development. J Fluids Eng 137(5):051201CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Aerospace ThermodynamicsUniversität StuttgartStuttgartGermany

Personalised recommendations