Experiments in Fluids

, 57:99 | Cite as

Evaporation dynamics and sedimentation pattern of a sessile particle laden water droplet

  • G. Corkidi
  • F. Montoya
  • G. Hernández-Cruz
  • M. Vargas
  • J. L. Luviano-Ortíz
  • E. Ramos
Research Article

Abstract

The dynamics of the flow inside an evaporating sessile droplet of water with polystyrene micro-spheres of 1.0 μm in diameter in suspension is described. The initial volume of the droplets is in the range from 0.6 to 1.0 μl, and observations were made in the last stages before total evaporation. The flow was recorded in a sequence of images that were analyzed with a micro-PIV system to extract quantitative information. Also, using image analysis techniques we determined the dynamics of the retreating liquid film once unpinned from the original contact line. Additionally, we have explored its correlation to the formation of the sediment pattern which is organized in elongated mounds roughly deposited in azimuthal and radial orientations. It is found that the aggregation dynamics of micro-spheres in the segments of the two orientations is different. This might have a substantial influence on the final arrangement of micro-spheres in the sediments.

Keywords

Sessile droplet Evaporation Image analysis 

References

  1. Bensimon D, Simon AJ, Croquette V, Bensimon A (1995) Stretching dna with a receding meniscus: experiments and models. Phys Rev Lett 74:4754–4757CrossRefGoogle Scholar
  2. Bhardwaj R, Fang X, Attinger P (2009) Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study. N J Phys 11:075020CrossRefGoogle Scholar
  3. Bhardwaj R, Fang X, Somasundaran P, Attinger P (2010) Self-assembly of colloidal particles from evaporating droplets: role of dlvo interactions and proposition of a phase diagram. Langmuir 26:7833–7842CrossRefGoogle Scholar
  4. Brutin D, Sobac B, Loquet B, Sampol J (2010) Pattern formation in drying drops of blood. J Fluid Mech 667:85–95CrossRefMATHGoogle Scholar
  5. Deegan RD (2000) Pattern formation in drying drops. Phys Rev E 61:475–485CrossRefGoogle Scholar
  6. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nat Lond 389:827–829CrossRefGoogle Scholar
  7. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (2000) Contact line deposits in an evaporating drop. Phys Rev E 62:756–765CrossRefGoogle Scholar
  8. DeGennes PG, Brochard-Wyart F, Quéré D (2004) Capillary and wetting phenomena: drops, bubbles, pearls, waves. Springer, New YorkCrossRefMATHGoogle Scholar
  9. Frastia L, Archer AJ, Thiele U (2011) Dynamical model for the formation of patterned deposits at receding contact lines. Phys Rev Lett 106:077801CrossRefGoogle Scholar
  10. Galliker P, Schneider J, Eghlidi H, Kress S, Sandoghdar V, Poulikakos D (2012) Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets. Nat Commun 3:2CrossRefGoogle Scholar
  11. Gonzalez RC, Woods RE (2008) Digital image processing, 3rd edn. Prentice Hall, New JerseyGoogle Scholar
  12. Hu H, Larson RG (2002) Evaporation of a sessile droplet on a substrate. J Phys Chem B 106:1334–1344CrossRefGoogle Scholar
  13. Hu H, Larson RG (2005) Analysis of the microfluid flow in an evaporating sessile droplet. Langmuir 21:3963–3971CrossRefGoogle Scholar
  14. Hu H, Larson RG (2006) Marangoni effect reverses coffee-ring depositions. J Phys Chem B 110:7090–7094CrossRefGoogle Scholar
  15. Kang KH, Lee SJ, Lee CM, Kang IS (2004) Quantitative visualization of flow inside an evaporating droplet using the ray tracing method. Meas Sci Technol 15:1104–11012CrossRefGoogle Scholar
  16. Larson RG (2014) Transport and deposition patterns in drying sessile droplets. AIChEJ 60:1538–1571CrossRefGoogle Scholar
  17. Marin AG, Gelderblom H, Lohse D, Snoeijer JH (2011a) Order-to-disorder transition in ring-shaped colloidal stains. Phys Rev Lett 107:085508CrossRefGoogle Scholar
  18. Marin AG, Gelderblom H, Lohse D, Snoeijer JH (2011b) Order-to-disorder transition in ring-shaped colloidal stains. supplementary material. Phys Rev Lett 107:085508CrossRefGoogle Scholar
  19. Nadkarni GD, Garoff S (1992) An investigation of microscopic aspects of contact angle hysteresis: pinning of the contact line on a single defect. Europhys Lett 20:523–528CrossRefGoogle Scholar
  20. Ondarcuhu T, Joachim C (1998) Drawing a single nanofibre over hundreds of microns. Europhys Lett 42:215–220CrossRefGoogle Scholar
  21. Picknett RG, Bexon R (1976) The evaporation of sessile or pendant drops in still air. J Colloid Interface 61:336–350CrossRefGoogle Scholar
  22. Sefiane K (2014) Patterns from drying drops. Adv Colloid Interface Sci 206:372–381CrossRefGoogle Scholar
  23. Spielman LA, Friedlander SK (1974) Role of the electrical double layer in particle deposition by convective diffusion. J Colloid Interface Sci 46:22–31CrossRefGoogle Scholar
  24. Thiele U (2014) Patterned deposition at moving contact lines. Adv Colloid Interface Sci 206:399–413CrossRefGoogle Scholar
  25. Wang H, Wang Z, Huang L, Mitra A, Yan Y (2001) Surface patterned porous films by convection assisted dynamic self-assembly of zeolite nanoparticles. Langmuir 17:2572–2574CrossRefGoogle Scholar
  26. Widjaja E, Harris MT (2008) Particle deposition study during sessile drop evaporation. AIChE J 54:2250–2260CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • G. Corkidi
    • 1
    • 2
  • F. Montoya
    • 1
    • 2
  • G. Hernández-Cruz
    • 2
    • 3
  • M. Vargas
    • 4
  • J. L. Luviano-Ortíz
    • 5
  • E. Ramos
    • 2
    • 3
  1. 1.Laboratorio de Imágenes y Visión por ComputadoraInstituto de BiotecnologíaCuernavacaMexico
  2. 2.Universidad Nacional Autónoma de MéxicoMexico CityMexico
  3. 3.Renewable Energy InstituteTemixcoMexico
  4. 4.Instituto Tecnológico de ZacatepecZacatepecMexico
  5. 5.Department of Mechanical EngineeringUniversidad de GuanajuatoSalamancaMexico

Personalised recommendations