Advertisement

IR thermography for dynamic detection of laminar-turbulent transition

  • Bernhard SimonEmail author
  • Adrian Filius
  • Cameron Tropea
  • Sven Grundmann
Research Article

Abstract

This work investigates the potential of infrared (IR) thermography for the dynamic detection of laminar-turbulent transition. The experiments are conducted on a flat plate at velocities of 8–14 m/s, and the transition of the laminar boundary layer to turbulence is forced by a disturbance source which is turned on and off with frequencies up to 10 Hz. Three different heating techniques are used to apply the required difference between fluid and structure temperature: a heated aluminum structure is used as an internal structure heating technique, a conductive paint acts as a surface bounded heater, while an IR heater serves as an example for an external heating technique. For comparison of all heating techniques, a normalization is introduced and the frequency response of the measured IR camera signal is analyzed. Finally, the different heating techniques are compared and consequences for the design of experiments on laminar-turbulent transition are discussed.

Keywords

Aluminum Sheet Heating Technique Noise Equivalent Temperature Difference Disturbance Source Unsteady Heat Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors gratefully acknowledge the financial support by the German Research Foundation DFG (project GR 3524/4-1). We also wish to thank Klaus de Groot from DLR Braunschweig for the fruitful discussions. Finally the authors thank the “Institut für Luft- und Raumfahrt” (Technische Universität Berlin) for the free loan of the cooled FLIR SC 3000 infrared camera and the IDD (Technische Universität Darmstadt) for screen printing of the samples with conductive paint.

References

  1. Astarita T, Carlomagno GM (2012) Infrared thermography for thermo-fluid-dynamics. Springer, BerlinGoogle Scholar
  2. ASTM International: ASTM E1213-14 (2014) Standard practice for minimum resolvable temperature difference for thermal imaging systemsGoogle Scholar
  3. ASTM International: ASTM E1543-14 (2014) Standard practice for noise equivalent temperature difference of thermal imaging systemsGoogle Scholar
  4. Banks DW, Van Dam C, Shiu H, Miller G (2000) Visualization of in-flight flow phenomena using infrared thermography. National Aeronautics and Space Administration, Dryden Flight Research CenterGoogle Scholar
  5. Breitenstein O, Warta W, Langenkamp M (2010) Lock-in thermography: basics and use for evaluating electronic devices and materials, vol 10. Springer, BerlinGoogle Scholar
  6. Cardone G, Astarita T, Carlomagno G (1997) Heat transfer measurements on a rotating disk. Int J Rotating Mach 3(1):1–9CrossRefGoogle Scholar
  7. Carlomagno GM, Cardone G (2010) Infrared thermography for convective heat transfer measurements. Exp Fluids 49(6):1187–1218CrossRefGoogle Scholar
  8. Crawford BK, Duncan Jr GT, West DE, Saric WS (2014) Quantitative boundary-layer transition measurements using ir thermography. AIAA SciTech pp. 13–17Google Scholar
  9. Crawford BK, Duncan GT Jr, West DE, Saric WS (2015) Robust, automated processing of ir thermography for quantitative boundary-layer transition measurements. Exp Fluids 56(7):1–11CrossRefGoogle Scholar
  10. Crawford BK et al (2013) Laminar-turbulent boundary layer transition imaging using ir thermography. Opt Photonics J 3(03):233CrossRefGoogle Scholar
  11. De Luca L, Carlomagno G, Buresti G (1990) Boundary layer diagnostics by means of an infrared scanning radiometer. Exp Fluids 9(3):121–128CrossRefGoogle Scholar
  12. Dhungel A, Lu Y, Phillips W, Ekkad SV, Heidmann J (2009) Film cooling from a row of holes supplemented with antivortex holes. J Turbomach 131(2):021,007CrossRefGoogle Scholar
  13. FLIR: The Ultimate infrared handbook for R&D ProfessionalsGoogle Scholar
  14. Gartenberg E, OBERTS A (1991) Airfoil transition and separation studies using an infrared imaging system. J Aircr 28(4):225–230CrossRefGoogle Scholar
  15. Gartenberg E, OBERTS A (1992) Twenty-five years of aerodynamic research with infrared imaging. J Aircr 29(2):161–171CrossRefGoogle Scholar
  16. Gartenberg E, Wright RE (1994) Boundary-layer transition detection with infrared imaging emphasizing cryogenic applications. AIAA J 32(9):1875–1882CrossRefGoogle Scholar
  17. Grawunder M, Reß R, Breitsamter C (2016) Thermographic transition detection for low-speed wind-tunnel experiments. AIAA J, pp 1–5Google Scholar
  18. Gurka R, Liberzon A, Hetsroni G (2004) Detecting coherent patterns in a flume by using piv and ir imaging techniques. Exp Fluids 37(2):230–236CrossRefGoogle Scholar
  19. Horstmann K, Quast A, Redeker G (1990) Flight and wind-tunnel investigations on boundary-layer transition. J Aircr 27(2):146–150CrossRefGoogle Scholar
  20. Jackson CN, Sherlock CN, Moore PO (2007) Nondestructive testing handbook: infrared and thermal testing. American Society for Nondestructive TestingGoogle Scholar
  21. Lang W, Gardner A, Mariappan S, Klein C, Raffel M (2015) Boundary-layer transition on a rotor blade measured by temperature-sensitive paint, thermal imaging and image derotation. Exp Fluids 56(6):1–14CrossRefGoogle Scholar
  22. Le Sant Y, Marchand M, Millan P, Fontaine J (2002) An overview of infrared thermography techniques used in large wind tunnels. Aerosp Sci Technol 6(5):355–366CrossRefGoogle Scholar
  23. Meola C, Carlomagno GM (2004) Recent advances in the use of infrared thermography. Meas Sci Technol 15(9):R27CrossRefGoogle Scholar
  24. Quast AW (1987) Detection of transition by infrared image technique. In: ICIASF’87-12th international congress on instrumentation in aerospace simulation facilities, vol. 1, pp 125–134Google Scholar
  25. Raffel M, Merz CB (2014) Differential infrared thermography for unsteady boundary-layer transition measurements. AIAA J 52(9):2090–2093CrossRefGoogle Scholar
  26. Reeh AD, Tropea C (2015) Behaviour of a natural laminar flow aerofoil in flight through atmospheric turbulence. J Fluid Mech 767:394–429MathSciNetCrossRefGoogle Scholar
  27. Richter K, Schülein E (2014) Boundary-layer transition measurements on hovering helicopter rotors by infrared thermography. Exp Fluids 55(7):1–13CrossRefGoogle Scholar
  28. Riedel H, Horstmann KH, Ronzheimer A, Sitzmann M (1998) Aerodynamic design of a natural laminar flow nacelle and the design validation by flight testing. Aerosp Sci Technol 2(1):1–12CrossRefGoogle Scholar
  29. Saric WS, Reed HL, Kerschen EJ (2002) Boundary-layer receptivity to Freestream disturbances. Ann Rev Fluid Mech 34(1):291–319MathSciNetCrossRefzbMATHGoogle Scholar
  30. Saric WS, Reed HL, White EB (2003) Stability and transition of three-dimensional boundary layers. Annu Rev Fluid Mech 35(1):413–440MathSciNetCrossRefzbMATHGoogle Scholar
  31. Schlichting H, Gersten K (2000) Boundary-Layer theory. Springer, HeidelbergCrossRefzbMATHGoogle Scholar
  32. Seitz A, Horstmann KH (2006) In-flight investigations of Tollmien-Schlichting waves. In: IUTAM symposium on one hundred years of Boundary Layer Research. Springer, pp 115–124Google Scholar
  33. Simon B, Nemitz T, Rohlfing J, Fischer F, Mayer D, Grundmann S (2015) Active flow control of laminar boundary layers for variable flow conditions. Int J Heat Fluid Flow 56:344–354CrossRefGoogle Scholar
  34. Simon B, Schnabel P, Grundmann S (2016) Ir measurements for quantification of laminar boundary layer stabilization with dbd plasma actuators. In: New results in numerical and experimental fluid mechanics X. SpringerGoogle Scholar
  35. Stock HW (2002) Wind tunnel-flight correlation for laminar wings in adiabatic and heating flow conditions. Aerosp Sci Technol 6(4):245–257MathSciNetCrossRefGoogle Scholar
  36. VDI eV (ed) (2010) VDI heat Atlas. Springer, Berlin, HeidelbergGoogle Scholar
  37. Vollmer M, Möllmann KP (2010) Infrared thermal imaging: fundamentals, research and applications. Wiley, WeinheimCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Bernhard Simon
    • 1
    Email author
  • Adrian Filius
    • 1
  • Cameron Tropea
    • 1
  • Sven Grundmann
    • 2
  1. 1.Center of Smart InterfacesTechnische Universität DarmstadtGriesheimGermany
  2. 2.Department of Fluid MechanicsUniversität RostockRostockGermany

Personalised recommendations