Advertisement

Schlieren imaging of viscous fingering in a horizontal Hele-Shaw cell

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Interfaces between different fluids can be unstable with regard to hydrodynamic instabilities such as viscous fingering or buoyancy-driven convection. To study such instabilities experimentally for transparent fluids, dyes or chemical indicators are most often used to track the dynamics. While the interfacial deformation can easily be tracked by color changes, it is difficult to have access to the internal flow structure for comparison with theoretical predictions. To overcome this problem, a modification of a Schlieren technique is introduced to image 3D flows during viscously driven instabilities in a horizontal Hele-Shaw cell without using any dye or chemical indicator. The method is exquisitely sensitive, readily yielding information about 3D flows in gaps under a millimeter and allowing imaging of the flow structure internal to the fingers, rather than merely imaging the flow boundary. Following a description of the technique, visualization of dynamics for nonreactive water–glycerol and reactive displacements is presented revealing previously unobserved internal flows. These flows are tentatively interpreted in terms of known theoretical predictions.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Al-Housseiny TT, Tsai PA, Stone HA (2012) Control of interfacial instabilities using flow geometry. Nat Phys 8:747–750

  2. Almarcha C, Trevelyan PMJ, Grosfils P, De Wit A (2010a) Chemically-driven hydrodynamic instabilities around A + B → C fronts. Phys Rev Lett 104:044501

  3. Almarcha C, Trevelyan PMJ, Riolfo LA et al (2010b) Active role of color indicators in buoyancy-driven instabilities of chemical fronts. J Phys Chem Lett 1:752–757

  4. Almarcha C, R’Honi Y, De Decker Y, Trevelyan PMJ, Eckert K, De Wit A (2011) Convective mixing induced by acid-base reactions. J Phys Chem B 115:9739–9744

  5. Bunton P, Dice B, Pojman JA, De Wit A, Brau F (2014) Quantitative viscosity field reconstruction of Hele-Shaw flows by imaging fluorescent molecular probes. Phys Fluid 26:114106

  6. Carballido-Landeira J, Trevelyan PMJ, Almarcha C, De Wit A (2013) Mixed-mode instability of a miscible interface due to coupling between Rayleigh–Taylor and double-diffusive convective modes. Phys Fluids 25:024107

  7. de Anna P, Jimenez-Martinez J, Tabuteau H et al (2014) Mixing and reaction kinetics in porous media: an experimental pore scale quantification. Environ Sci Technol 48:508–516

  8. Dias E, Parisio F, Miranda J (2010) Suppression of viscous fluid fingering: a piecewise-constant injection process. Phys Rev E 82:067301

  9. Fernandez J, Kurowski P, Petitjeans P, Meiburg E (2002) Density-driven unstable flows of miscible fluids in a Hele-Shaw cell. J Fluid Mech 451:239–260

  10. Grosfils P, Dubois F, Yourassowsky C, De Wit A (2009) Hot spots revealed by simultaneous experimental measurement of the two-dimensional concentration and temperature fields of an exothermic chemical front during finger-pattern formation. Phys Rev E 79:017301

  11. Haudin F, Riolfo LA, Knaepen B, Homsy GM, De Wit A (2014) Experimental study of a buoyancy-driven instability of a miscible horizontal displacement in a Hele-Shaw cell. Phys Fluids 26:044102

  12. Heussler F, Oliveira R, John M, Meiburg E (2014) Three-dimensional Navier–Stokes simulations of buoyant, vertical miscible Hele-Shaw displacements. J Fluid Mech 752:157–183

  13. Homsy GM (1987) Viscous fingering in porous media. Ann Rev Fluid Mech 19:271–311

  14. Joannes L, Dubois F, Legros J (2003) Phase-shifting schlieren: high-resolution quantitative schlieren that uses the phase-shifting technique principle. Appl Opt 42:5046–5053

  15. John MO, Oliveira RM, Heussler FHC, Meiburg E (2013) Variable density and viscosity, miscible displacements in horizontal Hele-Shaw cells. Part 2. Nonlinear simulations. J Fluid Mech 721:295–323

  16. Kuster S, Riolfo LA, Zalts A et al (2011) Differential diffusion effects on buoyancy-driven instabilities of acid-base fronts: the case of a color indicator. Phys Chem Chem Phys 13:17295–17303

  17. Loodts V, Thomas C, Rongy L, De Wit A (2014) Control of convective dissolution by chemical reactions: general classification and application to CO2 dissolution in reactive aqueous solutions. Phys Rev Lett 113:114501

  18. Maes R, Rousseaux G, Scheid B, Mishra M, Colinet P, De Wit A (2010) Experimental study of dispersion and miscible viscous fingering of initially circular samples in Hele-Shaw cells. Phys Fluids 22:123104

  19. Meyer-Arendt JR (1995) Introduction to classical and modern optics. Prentice Hall, Englewood Cliffs

  20. Nagatsu Y, De Wit A (2011) Viscous fingering of a miscible reactive A + B → C interface for an infinitely fast chemical reaction: nonlinear simulations. Phys Fluids 23:043103

  21. Newman AA (1968) Glycerol. C. R. C. Press, Cleveland

  22. Oliveira RM, Meiburg E (2011) Miscible displacements in Hele-Shaw cells: three-dimensional Navier–Stokes simulations. J Fluid Mech 687:431–460

  23. Petitjeans P, Maxworthy T (1996) Miscible displacements in capillary tubes. Part 1. Experiments. J Fluid Mech 326:37–56

  24. Pihler-Puzović D, Illien P, Heil M, Juel A (2012) Suppression of complex fingerlike patterns at the interface between air and a viscous fluid by elastic membranes. Phys Rev Lett 108:074502

  25. Riolfo LA, Nagatsu Y, Iwata S, Maes R, Trevelyan PMJ, De Wit A (2012) Experimental evidence of reaction-driven miscible viscous fingering. Phys Rev E 85:015304

  26. Rose HEL, Britton MM (2013) Magnetic resonance imaging of reaction-driven viscous fingering in a packed bed. Microporous Mesoporous Mater 2013:64–68

  27. Settles GS (2001) Schlieren and shadowgraph techniques. Springer, Berlin

  28. Talon L, Goyal N, Meiburg E (2013) Variable density and viscosity, miscible displacements in horizontal Hele-Shaw cells. Part 1: linear stability analysis. J Fluid Mech 721:268–294

  29. Ternström G, Sjöstrand A, Aly G, Jernqvist Å (1996) Mutual diffusion coefficients of water + ethylene glycol and water + glycerol mixtures. J Chem Eng Data 41:876–879

  30. Thomas C, Lemaigre L, Zalts A, D’Onofrio A, De Wit A (2015) Experimental study of CO2 convective dissolution: the effect of color indicators. Int J Greenh Gas Control 42:525–533

  31. Toepler A (1864) Beobachtungen nach einer neuen optischen Methode - Ein Beitrag zur Experimentalphysik. M. Cohen & Son, Bonn

  32. Wildenschild D, Sheppard A (2013) X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv Water Resour 51:217–246

  33. Wooding RA (1969) Growth of fingers at an unstable diffusing interface in a porous medium or Hele-Shaw cell. J Fluid Mech 39:477–495

Download references

Acknowledgments

We thank Macy Tush for assisting with data collection and John Pojman of the Louisiana State University for proposing the reactive step-growth polymerization system. P.B. acknowledges support of the National Science Foundation Grant CBET-1335739. A.D. thanks Prodex and FRS-FNRS under the FORECAST project for financial support. E.M. acknowledges support through NSF Grant CBET-0651498.

Author information

Correspondence to P. Bunton.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 6205 kb)

Supplementary material 2 (MP4 11950 kb)

Supplementary material 1 (MP4 6205 kb)

Supplementary material 2 (MP4 11950 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bunton, P., Marin, D., Stewart, S. et al. Schlieren imaging of viscous fingering in a horizontal Hele-Shaw cell. Exp Fluids 57, 28 (2016). https://doi.org/10.1007/s00348-016-2121-0

Download citation

Keywords

  • Astigmatism
  • Streamwise Vortex
  • Virtual Image
  • Schlieren Imaging
  • Gravitational Instability