Advertisement

Experiments in Fluids

, 56:177 | Cite as

Shadow imaging in bubbly gas–liquid two-phase flow in porous structures

  • Marco Altheimer
  • Richard Häfeli
  • Carmen Wälchli
  • Philipp Rudolf von Rohr
Research Article

Abstract

Shadow imaging is used for the investigation of bubbly gas–liquid two-phase flow in a porous structure. The porous structure is made of Somos\({^{\textregistered }}\) WaterShed XC 11122, a clear epoxy resin used in rapid prototyping. Optical access is provided by using an aqueous solution of sodium iodide and zinc iodide having the same refractive index as the structure material (\(n = 1.515\)). Nitrogen is injected into the continuous phase at volumetric transport fractions in the range of \(\dot{\varepsilon } = 2.4-4.1\,\%\) resulting in a hold-up of \(\varepsilon = 0.94-2.17\,\%\). The obtained images of overlapping bubble shadows are processed to measure the bubble dimensions. Therefore, a new processing sequence is developed to determine bubble dimensions from overlapping bubble shadows by ellipse fitting. The accuracy of the bubble detection and sizing routine is assessed processing synthetic images. It is shown that the developed technique is suitable for volumetric two-phase flow measurements. Important global quantities such as gas hold-up and total interfacial area can be measured with only one camera. Operation parameters for gas–liquid two-phase flows are determined to improve mass and heat transfer between the phases.

Keywords

Particle Image Velocimetry Bubble Size Bubble Column Bubble Diameter Bubbly Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols

Roman symbols

A

Area (mm2)

C

Constant \(((\sqrt{\hbox {pix}}\,s){^{-1}})\)

D

Sum of algebraic distances (−)

F

Frequency threshold (Hz)

F

Function (−)

L

Length (mm)

Re

Reynolds number (−)

V

Volume (mm3)

\(a-f\)

Coefficients (−)

\({\mathbf{{a}}}\)

Coefficients vector (−)

a

Major semi-axis (mm)

b

Minor semi-axis (mm)

c

Minor semi-axis (mm)

d

Diameter (mm)

e

Numerical eccentricity (−)

h

Height (mm)

k

Curvature (1/pix)

k

Number of drawings (−)

n

Refractive index (−)

p

Sample size (−)

s

Slip (−)

s

Perimeter length (pix)

v

Velocity (m/s)

\({\mathbf{{x}}}\)

Variables vector (−)

xy

Positions (pix)

\(x^{\prime},y^{\prime}\)

First-order derivatives (−)

\(x^{\prime\prime},y^{\prime\prime}\)

Second-order derivatives (1/pix)

Greek letters

\(\epsilon\)

Relative error (%)

\(\varepsilon\)

Porosity (−)

\(\varepsilon\)

Hold-up (%)

\(\dot{\varepsilon }\)

Volumetric transport fraction (%)

\(\eta\)

Dynamic viscosity (kg/(m s))

\(\rho\)

Density (kg/m3)

\(\sigma\)

Coefficient of variation (−)

\(\sigma\)

Surface tension (mN/m)

\(\sigma\)

Standard deviation (−)

Sub- and superscripts

32

Sauter mean

a

Major semi-axis

b

Bubble

c

Cell

e

Edging

h

Hydraulic

int

Interstitial

l

Liquid

mean

Arithmetic mean

min

Minimum

o

Oblate

p

Pore

pipe

Pipe

pr

Prolate

PU

Periodic unit

sp

Spherical

Abbreviations

b/w

Black and white

CAD

Computer-aided design

FFT

Fast Fourier transform

LED

Light-emitting diode

PIV

Particle image velocimetry

PMMA

Polymethyl methacrylate

PTV

Particle tracking velocimetry

PU

Periodic unit

\(\hbox {P} \& \hbox {ID}\)

Process and instrumentation diagram

Notes

Acknowledgments

We gratefully acknowledge financial support from the Swiss Confederation’s innovation promotion agency (CTI) in cooperation with DSM Nutritional Products.

References

  1. Akhmetbekov YK, Alekseenko SV, Dulin VM, Markovich DM, Pervunin KS (2010) Planar fluorescence for round bubble imaging and its application for the study of an axisymmetric two-phase jet. Exp Fluids 48(4):615–629. doi: 10.1007/s00348-009-0797-0 CrossRefGoogle Scholar
  2. Belden J, Ravela S, Truscott TT, Techet AH (2012) Three-dimensional bubble field resolution using synthetic aperture imaging: application to a plunging jet. Exp Fluids 53(3):839–861. doi: 10.1007/s00348-012-1322-4 CrossRefGoogle Scholar
  3. Bröder D, Sommerfeld M (2002) An advanced lif-plv system for analysing the hydrodynamics in a laboratory bubble column at higher void fractions. Exp Fluids 33(6):826–837. doi: 10.1007/s00348-002-0502-z CrossRefGoogle Scholar
  4. Bröder D, Sommerfeld M (2007) Planar shadow image velocimetry for the analysis of the hydrodynamics in bubbly flows. Meas Sci Technol 18(8):2513–2528. doi: 10.1088/0957-0233/18/8/028 CrossRefGoogle Scholar
  5. Bros WE, Cowell BC (1987) A technique for optimizing sample size (replication). J Exp Marine Biol Ecol 114(1):63–71. doi: 10.1016/0022-0981(87)90140-7 CrossRefGoogle Scholar
  6. Butscher D, Hutter C, Kuhn S, von Rohr PR (2012) Particle image velocimetry in a foam-like porous structure using refractive index matching: a method to characterize the hydrodynamic performance of porous structures. Exp Fluids 53(4):1123–1132. doi: 10.1007/s00348-012-1346-9 CrossRefGoogle Scholar
  7. Castanet G, Dunand P, Caballina O, Lemoine F (2013) High-speed shadow imagery to characterize the size and velocity of the secondary droplets produced by drop impacts onto a heated surface. Exp Fluids 54(3):1–17. doi: 10.1007/s00348-013-1489-3 CrossRefGoogle Scholar
  8. Chaouki J, Larachi F, Dudukovic MP (1997) Non-invasive monitoring of multiphase flows. Elsevier, Amsterdam. ISBN: 978-0-444-82521-6Google Scholar
  9. Chen R, Fan LS (1992) Particle image velocimetry for characterizing the flow structure in three-dimensional gas-liquid-solid fluidized beds. Chem Eng Sci 47(13):3615–3622. doi: 10.1016/0009-2509(92)85077-O CrossRefGoogle Scholar
  10. Clift R, Grace JR, Weber ME (2005) Bubbles, drops, and particles. Courier Dover Publications, MineolaGoogle Scholar
  11. Colella D, Vinci D, Bagatin R, Masi M, ABu Bakr E (1999) A study on coalescence and breakage mechanisms in three different bubble columns. Chem Eng Sci 54(21):4767–4777. doi: 10.1016/S0009-2509(99)00193-1 CrossRefGoogle Scholar
  12. DSM (2014) Product Data Sheet–Somos WaterShed XC 11122Google Scholar
  13. Efron B (1979) Bootstrap methods: another look at the jackknife. Annals Stat 1–26Google Scholar
  14. Fitzgibbon A, Pilu M, Fisher RB (1999) Direct least square fitting of ellipses. IEEE Trans Pattern Anal Mach Intell 21(5):476–480. doi: 10.1109/34.765658 CrossRefGoogle Scholar
  15. Fujiwara A, Danmoto Y, Hishida K, Maeda M (2004) Bubble deformation and flow structure measured by double shadow images and piv/lif. Exp Fluids 36(1):157–165. doi: 10.1007/s00348-003-0691-0 CrossRefGoogle Scholar
  16. Garnier C, Lance M, Marié J (2002) Measurement of local flow characteristics in buoyancy-driven bubbly flow at high void fraction. Exp Thermal Fluid Sci 26(6):811–815. doi: 10.1016/S0894-1777(02)00198-X CrossRefGoogle Scholar
  17. Häfeli R, Altheimer M, Butscher D, Rudolf von Rohr P (2014) Piv study of flow through porous structure using refractive index matching. Exp Fluids 55(5):1–13. doi: 10.1007/s00348-014-1717-5 CrossRefGoogle Scholar
  18. Häfeli R, Hutter C, Damsohn M, Prasser HM, Rudolf von Rohr P (2013) Dispersion in fully developed flow through regular porous structures: experiments with wire-mesh sensors. Chem Eng Process Process Intensif 69:104–111. doi: 10.1016/j.cep.2013.03.006 CrossRefGoogle Scholar
  19. Hibiki T, Ishii M (1999) Experimental study on interfacial area transport in bubbly two-phase flows. Int J Heat Mass Transf 42(16):3019–3035. doi: 10.1016/S0017-9310(99)00014-9 CrossRefGoogle Scholar
  20. Hirschberg S, Koubek R, Moser F, Schöck J (2009) An improvement of the sulzer smx static mixer significantly reducing the pressure drop. Chem Eng Res Design 87(4):524–532. doi: 10.1016/j.cherd.2008.12.021 CrossRefGoogle Scholar
  21. Honkanen M, Elcock D, Kuo CJ, Peles Y, Amitay M (2011) Lagrangian tracking of bubbles interacting with pin-fins in a microchannel. Exp Fluids 50(6):1527–1538. doi: 10.1007/s00348-010-1007-9 CrossRefGoogle Scholar
  22. Honkanen M, Saarenrinne P, Stoor T, Niinimäki J (2005) Recognition of highly overlapping ellipse-like bubble images. Meas Sci Technol 16(9):1760. doi: 10.1088/0957-0233/16/9/007 CrossRefGoogle Scholar
  23. Hutter C, Mascarello F, Von Rohr PR, Ruppen D (2010) Device for processing and conditioning of material transported through the device. US Patent App. 13/376,266Google Scholar
  24. Hutter C, Zenklusen A, Kuhn S, Rudolf von Rohr P (2011) Large eddy simulation of flow through a streamwise-periodic structure. Chem Eng Sci 66(3):519–529. doi: 10.1016/j.ces.2010.11.015 CrossRefGoogle Scholar
  25. Hutter C, Zenklusen A, Lang R, Rudolf von Rohr P (2011) Axial dispersion in metal foams and streamwise-periodic porous media. Chem Eng Sci 66(6):1132–1141. doi: 10.1016/j.ces.2010.12.016 CrossRefGoogle Scholar
  26. Kim JS, Kim SM, Kim HD, Ji HS, Kim KC (2012) Dynamic structures of bubble-driven liquid flows in a cylindrical tank. Exp Fluids 53(1):21–35. doi: 10.1007/s00348-011-1224-x MathSciNetCrossRefGoogle Scholar
  27. Kitagawa A, Hishida K, Kodama Y (2005) Flow structure of microbubble-laden turbulent channel flow measured by piv combined with the shadow image technique. Exp Fluids 38(4):466–475. doi: 10.1007/s00348-004-0926-8 CrossRefGoogle Scholar
  28. Kong XZ, Holzner M, Stauffer F, Kinzelbach W (2011) Time-resolved 3d visualization of air injection in a liquid-saturated refractive-index-matched porous medium. Exp Fluids 50(6):1659–1670. doi: 10.1007/s00348-010-1018-6 CrossRefGoogle Scholar
  29. Lance M, Bataille J (1991) Turbulence in the liquid phase of a uniform bubbly air-water flow. J Fluid Mech 222:95–118. doi: 10.1017/S0022112091001015 CrossRefGoogle Scholar
  30. Lindken R, Merzkirch W (2000) Velocity measurements of liquid and gaseous phase for a system of bubbles rising in water. Exp Fluids 29(1):S194–S201. doi: 10.1007/s003480070021 CrossRefGoogle Scholar
  31. Ma Y, Yan G, Scheuermann A, Bringemeier D, Kong XZ, Li L (2014) Size distribution measurement for densely binding bubbles via image analysis. Exp Fluids 55(12):1–6. doi: 10.1007/s00348-014-1860-z CrossRefGoogle Scholar
  32. Murai Y, Matsumoto Y, Yamamoto F (2001) Three-dimensional measurement of void fraction in a bubble plume using statistic stereoscopic image processing. Exp Fluids 30(1):11–21. doi: 10.1007/s003480000129 CrossRefGoogle Scholar
  33. Murakawa H, Kikura H, Aritomi M (2005) Application of ultrasonic doppler method for bubbly flow measurement using two ultrasonic frequencies. Exp Thermal Fluid Sci 29(7):843–850. doi: 10.1016/j.expthermflusci.2005.03.002 CrossRefGoogle Scholar
  34. Narrow T, Yoda M, Abdel-Khalik S (2000) A simple model for the refractive index of sodium iodide aqueous solutions. Exp Fluids 28(3):282–283. doi: 10.1007/s003480050389 CrossRefGoogle Scholar
  35. Nogueira S, Sousa R, Pinto A, Riethmuller M, Campos J (2003) Simultaneous piv and pulsed shadow technique in slug flow: a solution for optical problems. Exp Fluids 35(6):598–609. doi: 10.1007/s00348-003-0708-8 CrossRefGoogle Scholar
  36. Northrup MA, Kulp TJ, Angel SM, Pinder GF (1993) Direct measurement of interstitial velocity field variations in a porous medium using fluorescent-particle image velocimetry. Chem Eng Sci 48(1):13–21. doi: 10.1016/0009-2509(93)80279-Y CrossRefGoogle Scholar
  37. Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11(285–296):23–27Google Scholar
  38. Rodríguez-Rodríguez J, Martínez-Bazán C, Montañes JL (2003) A novel particle tracking and break-up detection algorithm: application to the turbulent break-up of bubbles. Meas Sci Technol 14(8):1328. doi: 10.1088/0957-0233/14/8/319 CrossRefGoogle Scholar
  39. Sathe MJ, Thaker IH, Strand TE, Joshi JB (2010) Advanced piv/lif and shadowgraphy system to visualize flow structure in two-phase bubbly flows. Chem Eng Sci 65(8):2431–2442. doi: 10.1016/j.ces.2009.11.014 CrossRefGoogle Scholar
  40. So S, Morikita H, Takagi S, Matsumoto Y (2002) Laser doppler velocimetry measurement of turbulent bubbly channel flow. Exp Fluids 33(1):135–142. doi: 10.1007/s00348-002-0459-y CrossRefGoogle Scholar
  41. Svensson FJ, Rasmuson A (2006) Piv measurements in a liquid-liquid system at volume percentages up to 10 % dispersed phase. Exp Fluids 41(6):917–931. doi: 10.1007/s00348-006-0211-0 CrossRefGoogle Scholar
  42. Willert C, Stasicki B, Klinner J, Moessner S (2010) Pulsed operation of high-power light emitting diodes for imaging flow velocimetry. Meas Sci Technol 21(7):075,402. doi: 10.1088/0957-0233/21/7/075402 CrossRefGoogle Scholar
  43. Wu Q, Ishii M (1999) Sensitivity study on double-sensor conductivity probe for the measurement of interfacial area concentration in bubbly flow. Int J Multiph Flow 25(1):155–173. doi: 10.1016/S0301-9322(98)00037-8 zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Marco Altheimer
    • 1
  • Richard Häfeli
    • 1
  • Carmen Wälchli
    • 1
  • Philipp Rudolf von Rohr
    • 1
  1. 1.Institute of Process Engineering ETH ZürichZürichSwitzerland

Personalised recommendations