Advertisement

Experiments in Fluids

, 56:140 | Cite as

Laser-induced micro-jetting from armored droplets

  • J. O. Marston
  • S. T. Thoroddsen
Research Article

Abstract

We present findings from an experimental study of laser-induced cavitation within a liquid drop coated with a granular material, commonly referred to as “armored droplets” or “liquid marbles.” The cavitation event follows the formation of plasma after a nanosecond laser pulse. Using ultra-high-speed imaging up to 320,610 fps, we investigate the extremely rapid dynamics following the cavitation, which manifests itself in the form of a plethora of micro-jets emanating simultaneously from the spaces between particles on the surface of the drop. These fine jets break up into droplets with a relatively narrow diameter range, on the order of 10 μm.

Keywords

Laser Pulse Cavitation Cavitation Bubble Laser Pulse Energy Liquid Free Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Supplementary material 1 (avi 5382 KB)

References

  1. Allen RR, Meyer JD, Knight WR (1985) Thermodynamics and hydrodynamics of thermal ink jets. Hewlett-Packard 36:21–27Google Scholar
  2. Ando K, Liu A-Q, Ohl C-D (2012) Homogenous nucleation in water in microfluidic channels. Phys Rev Lett 109:044501CrossRefGoogle Scholar
  3. Antkowiak A, Bremond N, Le Dizes S, Villermaux E (2007) Short-term dynamics of a density interface following an impact. J Fluid Mech 577:241–250CrossRefGoogle Scholar
  4. Apitz I, Vogel A (2005) Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin. Appl Phys A 81:329–338CrossRefGoogle Scholar
  5. Arbatan T, Shen W (2011) Measurement of the surface tension of liquid marbles. Langmuir 27:12923–12929CrossRefGoogle Scholar
  6. Armstrong RL (1984) Aerosol heating and vaporization by pulsed light beams. Appl Opt 23:148–155CrossRefGoogle Scholar
  7. Aussillous P, Quere D (2006) Properties of liquid marbles. Proc R Soc A 462:973–999CrossRefGoogle Scholar
  8. Bormashenko E, Pogreb R, Whyman G, Musin A, Bormashenko Y (2009) Shape, vibrations, and effective surface tensions of water marbles. Langmuir 25:1893–1896CrossRefGoogle Scholar
  9. Carls JC, Brock JR (1988) Propagation of laser breakdown and detonation waves in transparent droplets. Opt Lett 13:273–275CrossRefGoogle Scholar
  10. Chen RCC, Yu YT, Su KW, Chen JF, Chen YF (2013) Exploration of water jet generated by Q-switched laser induced water breakdown with different depths beneath a flat free surface. Opt Express 21:445–453CrossRefGoogle Scholar
  11. Chitanvis SM (1986) Explosion of water droplets. Appl Opt 25:1837–1839CrossRefGoogle Scholar
  12. Deng P, Lee Y-K, Cheng P (2003) The growth and collapse of a micro-bubble under pulse heating. Int J Heat Mass Transf 46:4041–4050CrossRefGoogle Scholar
  13. Eickmans JH, Hsieh W-F, Chang RK (1987) Laser-induced explosion of \(\text{ H }_{2}\text{ O }\) droplets: spatially resolved spectra. Opt Lett 12:22–24CrossRefGoogle Scholar
  14. Entov VM, Sultanov FM, Yarin AL (1985) Breakup of liquid films under the action of a pressure drop in the ambient gas. Sov Phys Dokl 30:882Google Scholar
  15. Entov VM, Sultanov FM, Yarin AL (1986) Disintegration of liquid films subjected to an ambient gas pressure difference. Fluid Dyn 21(3):376–383CrossRefGoogle Scholar
  16. Gao L, McCarthy TJ (2007) Ionic liquid marbles. Langmuir 23:10445–10447CrossRefGoogle Scholar
  17. Heijnen L, Quinto-Su PA, Zhao X, Ohl C-D (2009) Cavitation within a droplet. Phys Fluids 21:091102CrossRefGoogle Scholar
  18. Hsieh W-F, Zheng J-B, Wood CF, Chu BT, Chang RK (1987) Propagation velocity of laser-induced plasma inside and outside a transparent droplet. Opt Lett 12:576–578CrossRefGoogle Scholar
  19. Kafalas P, Herrmann J (1973) Dynamics and energetics of the explosive vaporization of fog droplets by a 10.6-μm laser pulse. Appl Opt 12:772–775CrossRefGoogle Scholar
  20. Karri B, Ohl S-W, Klaseboer E, Ohl C-D, Khoo BC (2012) Jets and sprays arising from a spark-induced oscillating bubble near a plate with a hole. Phys Rev E 86:036309CrossRefGoogle Scholar
  21. Lindinger A, Hagen J, Socaciu LD, Bernhardt TM, Woste L, Duft D, Leisner T (2004) Time-resolved explosion dynamics of \(\text{ H }_{2}\text{ O }\) droplets induced by femtosecond laser pulses. Appl Opt 43:5263CrossRefGoogle Scholar
  22. Marston JO, Li E-Q, Thoroddsen ST (2012) Evolution of fluid-like granular ejectas generated by sphere impact. J Fluid Mech 704:5–36CrossRefGoogle Scholar
  23. Obreschkow D, Kobel P, Dorsaz N, de Bosset A, Nicollier C, Farhat M (2006) Cavitation bubble dynamics inside liquid drops in microgravity. Phys Rev Lett 97:094502CrossRefGoogle Scholar
  24. Obreschkow D, Tinguely M, Dorsaz N, Kobel P, de Bosset A, Farhat M (2011) Universal scaling law for jets of collapsing bubbles. Phys Rev Lett 107:204501CrossRefGoogle Scholar
  25. Paunov VN (2003) Novel method for determining the three-phase contact angle of colloid particles adsorbed at air–water and oil–water interfaces. Langmuir 19:7970–7976CrossRefGoogle Scholar
  26. Quinto-Su P, Lim KY, Ohl C-D (2009) Cavitation bubble dynamics in microfluidic gaps of variable height. Phys Rev E 80:047301CrossRefGoogle Scholar
  27. Sultanov FM, Yarin AL (1986) Radial expansion of cylindrical layers of viscous and rheologically complex fluids. J Eng Phys Thermophys 50(6):645–652CrossRefGoogle Scholar
  28. Sultanov FM, Yarin AL (1988) Rayleigh–Taylor instability of expanded polymer films. J Appl Mech Tech Phys 29(3):409–414MathSciNetCrossRefGoogle Scholar
  29. Sultanov FM, Yarin AL (1990) Droplet size distribution in a percolation model for explosive liquid dispersal. J Appl Mech Tech Phys 31(5):708–713CrossRefGoogle Scholar
  30. Tagawa Y, Oudalov N, Visser CW, Peters IR, van der Meer D, Sun C, Prosperetti A, Lohse D (2012) Highly focused supersonic microjets. Phys Rev X 2:031002Google Scholar
  31. Thoroddsen ST, Takehara K, Etoh TG, Ohl C-D (2009) Spray and microjets produced by focusing a laser pulse into a hemispherical drop. Phys Fluids 21:112101CrossRefGoogle Scholar
  32. Zeng C, Bissig H, Dinsmore AD (2006) Particles on droplets: from fundamental physics to novel materials. Solid State Commun 139:547–556CrossRefGoogle Scholar
  33. Zhiyuan Z, Hua G, Zhenjun F, Jie X (2014) Characteristics of droplets ejected from liquid propellants ablated by laser pulses in laser plasma propulsion. Plasma Sci Technol 16:251–254CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Chemical EngineeringTexas Tech UniversityLubbockUSA
  2. 2.Division of Physical Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations