Advertisement

Experiments in Fluids

, 56:110 | Cite as

Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow

  • Davide GattiEmail author
  • Andreas Güttler
  • Bettina Frohnapfel
  • Cameron Tropea
Research Article

Abstract

In the present work, wall oscillations for turbulent skin friction drag reduction are realized in an air turbulent duct flow by means of spanwise-oscillating active surfaces based on dielectric electroactive polymers. The actuator system produces spanwise wall velocity oscillations of 820 mm/s semi-amplitude at its resonance frequency of 65 Hz while consuming an active power of a few 100 mW. The actuators achieved a maximum integral drag reduction of 2.4 %. The maximum net power saving, budget of the power benefit and cost of the control, was measured for the first time with wall oscillations. Though negative, the net power saving is order of magnitudes higher than what has been estimated in previous studies. Two new direct numerical simulations of turbulent channel flow show that the finite size of the actuator only partially explains the lower values of integral drag reduction typically achieved in laboratory experiments compared to numerical simulations.

Keywords

Wind Tunnel Direct Numerical Simulation Skin Friction Drag Reduction Spanwise Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

DG gratefully acknowledge the Fritz and Margot Faudi foundation for financing his research period at TU Darmstadt and Prof. Maurizio Quadrio for interesting discussions.

References

  1. Auteri F, Baron A, Belan M, Campanardi G, Quadrio M (2010) Experimental assessment of drag reduction by traveling waves in a turbulent pipe flow. Phys Fluids 22(11):115,103/14Google Scholar
  2. Bechert D, Bruse M, Hage W, Jvd Hoeven, Hoppe G (1997) Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J Fluid Mech 338:59–87CrossRefGoogle Scholar
  3. Choi JI, Xu CX, Sung HJ (2002) Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows. AIAA J 40(5):842–850CrossRefGoogle Scholar
  4. Choi KS, Clayton B (2001) The mechanism of turbulent drag reduction with wall oscillation. Int J Heat Fluid Flow 22:1–9CrossRefGoogle Scholar
  5. Choi KS, DeBisschop J, Clayton B (1998) Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J 36(7):1157–1162CrossRefGoogle Scholar
  6. Dean R (1978) Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. Trans ASME I J Fluids Eng 100:215CrossRefGoogle Scholar
  7. Dearing SS, Morrison JF, Iannucci L (2010) Electro-active polymer (EAP) dimple actuators for flow control: design and characterisation. Sens Actuators A 157(2):210–218. http://www.sciencedirect.com/science/article/pii/S0924424709005044
  8. Durst F, Fischer M, Jovanović J, Kikura H (1998) Methods to set up and investigate low Reynolds number, fully developed turbulent plane channel flows. J Fluids Eng 120(3):496–503CrossRefGoogle Scholar
  9. Gatti D (2014) Turbulent skin-friction drag reduction visa spanwise wall oscillations. PhD thesis, Technische Universität DarmstadtGoogle Scholar
  10. Gatti D, Quadrio M (2013) Performance losses of drag-reducing spanwise forcing at moderate values of the Reynolds number. Phys Fluids 25:125,109(17)Google Scholar
  11. Gatti D, Haus H, Matysek M, Frohnapfel B, Tropea C, Schlaak HF (2014a) The dielectric breakdown limit of silicone dielectric elastomer actuators. Appl Phys Lett 104(5):052905, doi: 10.1063/1.4863816, http://scitation.aip.org/content/aip/journal/apl/104/5/10.1063/1.4863816
  12. Gatti D, Tropea C, Schlaak HF (2014b) Dynamic performance of silicone dielectric elastomer actuators with bi-stable buckled beams. In: Proceedings of SPIE, EAPAD, vol 9056, pp 905, 638–905, 638–712. doi: 10.1117/12.2045048
  13. Gouder K (2011) Turbulent friction drag reduction using electroactive polymer surfaces. PhD thesis, Imperical College, LondonGoogle Scholar
  14. Gouder K, Potter M, Morrison J (2013) Turbulent friction drag reduction using electroactive polymer and electromagnetically driven surfaces. Exp Fluids 54(1):1441CrossRefGoogle Scholar
  15. Güttler A (2015) High accuracy determination of skin-friction differences in an air channel flow based on pressure drop measurement. PhD thesis, Karlsruhe Institute of TechnologyGoogle Scholar
  16. Herwig H, Voigt M (1995) Turbulent entrance flow in a channel: an asymptotic approach. In: Bois PA, Driat E, Gatignol R, Rigolot A (eds) Asymptotic modelling in fluid mechanics. Springer, New York, pp 51–58. doi: 10.1007/3-540-59414-0_53 CrossRefGoogle Scholar
  17. Huang J, Shian S, Diebold RM, Suo Z, Clarke DR (2012) The thickness and stretch dependence of the electrical breakdown strength of an acrylic dielectric elastomer. Appl Phys Lett 101(12):122905. doi: 10.1063/1.4754549, http://link.aip.org/link/?APL/101/122905/1
  18. ISO 5167–2 (2003) Measurement of fluid flow by means of pressure differential devices inserted in circular-cross section conduits running full. International StandardGoogle Scholar
  19. Jung W, Mangiavacchi N, Akhavan R (1992) Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys Fluids A 4(8):1605–1607CrossRefGoogle Scholar
  20. Karniadakis G, Choi KS (2003) Mechanisms on transverse motions in turbulent wall flows. Ann Rev Fluid Mech 35:45–62CrossRefMathSciNetGoogle Scholar
  21. Kasagi N, Hasegawa Y, Fukagata K (2009) Towards cost-effective control of wall turbulence for skin-friction drag reduction. In: Advances in turbulence XII, vol 132, Springer, pp 189–200Google Scholar
  22. Kim J, Hussain F (1993) Propagation velocity of perturbations in turbulent channel flow. Phys Fluids A 5(3):695–706CrossRefGoogle Scholar
  23. Lardeau S, Leschziner MA (2013) The streamwise drag-reduction response of a boundary layer subjected to a sudden imposition of transverse oscillatory wall motion. Phys Fluids 25(7):075109. doi: 10.1063/1.4816290, http://scitation.aip.org/content/aip/journal/pof2/25/7/10.1063/1.4816290
  24. Luchini P, Quadrio M (2006) A low-cost parallel implementation of direct numerical simulation of wall turbulence. J Comp Phys 211(2):551–571CrossRefzbMATHGoogle Scholar
  25. Negi P, Kikura H, Skote M (2015) Dns of a single low-speed streak subject to spanwise wall oscillations. Flow Turb Combust 1–22. doi: 10.1007/s10494-015-9599-z
  26. Oliver T, Malaya N, Rhys U, Moser R (2014) Estimating uncertainties in statistics computed from DNS. Phys Fluids 26(3):035101. doi: 10.1063/1.4866813 CrossRefGoogle Scholar
  27. Pelrine R, Kornbluh R, Joseph J, Chiba S (1997) Electrostriction of polymer films for microactuators. In: Proceedings of IEEE, MEMS, IEEE, pp 238–243. doi: 10.1109/MEMSYS.1997.581811
  28. Pelrine RE, Kornbluh RD, Joseph JP (1998) Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens Actuators A 64:77–85CrossRefGoogle Scholar
  29. Potter M, Gouder K, Morrison JF (2011) A numerical model for electro-active polymer actuators with experimental validation. Sens Actuators AGoogle Scholar
  30. Quadrio M (2011) Drag reduction in turbulent boundary layers by in-plane wall motion. Phil Trans R Soc A 369(1940):1428–1442CrossRefGoogle Scholar
  31. Quadrio M, Luchini P (2003) Integral time-space scales in turbulent wall flows. Phys Fluids 15(8):2219–2227CrossRefGoogle Scholar
  32. Quadrio M, Ricco P (2003) Initial response of a turbulent channel flow to spanwise oscillation of the walls. J Turbul 4:N7. doi: 10.1088/1468-5248/4/1/007 Google Scholar
  33. Quadrio M, Ricco P (2004) Critical assessment of turbulent drag reduction through spanwise wall oscillation. J Fluid Mech 521:251–271CrossRefzbMATHGoogle Scholar
  34. Quadrio M, Ricco P, Viotti C (2009) Streamwise-traveling waves of spanwise wall velocity for turbulent drag reduction. J Fluid Mech 627:161–178CrossRefzbMATHMathSciNetGoogle Scholar
  35. Reader-Harris MJ, Sattary J (1996) The orifice plate discharge coefficient equation—the equation for iso 5167–1. In: Proceedings of the 14th north sea flow measurement workshopGoogle Scholar
  36. Ricco P (2004) Modification of near-wall turbulence due to spanwise wall oscillations. J Turbul 5:N24. doi: 10.1088/1468-5248/5/1/024 Google Scholar
  37. Ricco P, Hahn S (2013) Turbulent drag reduction through rotating discs. J Fluid Mech 722:267–290. doi: 10.1017/jfm.2013.92
  38. Ricco P, Quadrio M (2008) Wall-oscillation conditions for drag reduction in turbulent channel flow. Intl J Heat Fluid Flow 29:601–612CrossRefGoogle Scholar
  39. Ricco P, Wu S (2004) On the effects of lateral wall oscillations on a turbulent boundary layer. Exp Therm Fluid Sci 29(1):41–52CrossRefGoogle Scholar
  40. Ricco P, Ottonelli C, Hasegawa Y, Quadrio M (2012) Changes in turbulent dissipation in a channel flow with oscillating walls. J Fluid Mech 700:77–104CrossRefzbMATHMathSciNetGoogle Scholar
  41. Rosenblatt F, Morrison J, Iannucci L (2008) Modelling electroactive polymer (eap) actuators: electromechanical coupling using finite element software. In: Proceedings of SPIE, EAPAD, vol 6927Google Scholar
  42. Skote M (2011) Turbulent boundary layer flow subject to streamwise oscillation of spanwise wall-velocity. Phys Fluids 23(081703):4Google Scholar
  43. Skote M (2012) Temporal and spatial transients in turbulent boundary layer flow over an oscillating wall. Int J Heat Fluid Flow 38:1–12CrossRefGoogle Scholar
  44. Skote M (2013) Comparison between spatial and temporal wall oscillations in turbulent boundary layer flows. J Fluid Mech 730:273–294. doi: 10.1017/jfm.2013.344, http://journals.cambridge.org/article_S0022112013003443
  45. Thiébaux HJ, Zwiers FW (1984) The interpretation and estimation of effective sample size. J Appl Meteorol 23(5):800–811CrossRefGoogle Scholar
  46. Touber E, Leschziner M (2012) Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J Fluid Mech 693:150–200CrossRefzbMATHGoogle Scholar
  47. Tröls A, Kogler A, Baumgartner R, Kaltseis R, Keplinger C, Schwödiauer R, Graz I, Bauer S (2013) Stretch dependence of the electrical breakdown strength and dielectric constant of dielectric elastomers. Smart Mater Struct 22(10):104012. http://stacks.iop.org/0964-1726/22/i=10/a=104012
  48. Tropea C, Yarin A, Foss J (eds) (2007) Handbook of experimental fluid mechanics. Springer, New YorkGoogle Scholar
  49. Trujillo S, Bogard D, Ball K (1997) Turbulent boundary layer drag reduction using an oscillating wall. AIAA J. doi: 10.2514/6.1997-1870 Google Scholar
  50. VDI (ed) (2002) VDI-Wärmeatlas. Springer, BerlinGoogle Scholar
  51. White FM (1974) Viscous fluid flow. McGraw-Hill, New YorkGoogle Scholar
  52. Wise DJ, Ricco P (2014) Turbulent drag reduction through oscillating discs. J Fluid Mech 746:536–564. doi: 10.1017/jfm.2014.122
  53. Yudhistira I, Skote M (2011) Direct numerical simulation of a turbulent boundary layer over an oscillating wall. J Turbul 12:N9. doi: 10.1080/14685248.2010.538397

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Davide Gatti
    • 1
    Email author
  • Andreas Güttler
    • 1
  • Bettina Frohnapfel
    • 1
  • Cameron Tropea
    • 2
  1. 1.Department of Fluid MechanicsKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Center of Smart InterfacesTechnische Universtät DarmstadtDarmstadtGermany

Personalised recommendations