Experiments in Fluids

, 56:102 | Cite as

Quantification of the effect of surface heating on shock wave modification by a plasma actuator in a low-density supersonic flow over a flat plate

  • Romain JoussotEmail author
  • Viviana Lago
  • Jean-Denis Parisse
Research Article


This paper describes experimental and numerical investigations focused on the shock wave modification induced by a dc glow discharge. The model is a flat plate in a Mach 2 air flow, equipped with a plasma actuator composed of two electrodes. A weakly ionized plasma was created above the plate by generating a glow discharge with a negative dc potential applied to the upstream electrode. The natural flow exhibited a shock wave with a hyperbolic shape. Pitot measurements and ICCD images of the modified flow revealed that when the discharge was ignited, the shock wave angle increased with the discharge current. The spatial distribution of the surface temperature was measured with an IR camera. The surface temperature increased with the current and decreased along the model. The temperature distribution was reproduced experimentally by placing a heating element instead of the active electrode, and numerically by modifying the boundary condition at the model surface. For the same surface temperature, experimental investigations showed that the shock wave angle was lower with the heating element than for the case with the discharge switched on. The results show that surface heating is responsible for roughly 50 % of the shock wave angle increase, meaning that purely plasma effects must also be considered to fully explain the flow modifications observed.


Shock Wave Flat Plate Surface Heating Plasma Actuator ICCD Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Romain Joussot’s fellowship is provided by the French Government’s Investissement d’Avenir program: Laboratoire d’Excellence CAPRYSSES (Grant No. ANR-11-LABX-0006-01). Additional funding is provided by the Région Centre with the PASS grant (Convention No. 00078782). The authors would like to acknowledge Dr. Ivan Fedioun for fruitful discussions. The authors would like to thank Daniel Andrieux (MPR Industries) for his technical assistance with the pumping group. The authors would furthermore like to acknowledge the constructive feedback from the reviewers.


  1. Abernethy RB, Benedict RP, Dowdell RB (1985) ASME measurement uncertainty. J Fluid Eng-Trans ASME 107(2):161–164CrossRefGoogle Scholar
  2. Allègre J, Bisch C (1968) Angle of attack and leading edge effects on the flow about a flat plate at Mach number 18. AIAA J 6(5):848–852CrossRefGoogle Scholar
  3. Artana G, D’Adamo J, Léger L, Moreau E, Touchard G (2002) Flow control with electrohydrodynamic actuators. AIAA J 40(9):1773–1779CrossRefGoogle Scholar
  4. Benard N, Mizuno A, Moreau E (2009) A large-scale multiple dielectric barrier discharge actuator based on an innovative three-electrode design. J Phys D Appl Phys 42(23):235204CrossRefGoogle Scholar
  5. Bird GA (1970) Breakdown of translational and rotational equilibrium in gaseous expansions. AIAA J 8(11):1998–2003CrossRefGoogle Scholar
  6. Bityurin VA, Klimov AI (2005) Non-thermal plasma aerodynamics effects. In: AIAA paper no. 2005-978Google Scholar
  7. Bletzinger P, Ganguly BN, van Wie D, Garscadden A (2005) Plasmas in high speed aerodynamics. J Phys D Appl Phys 38(4):R33–57CrossRefGoogle Scholar
  8. Burm KTAL, Goedheer WJ, Schram DC (1999) The isentropic exponent in plasmas. Phys Plasmas 6(6):2622–2627CrossRefGoogle Scholar
  9. Campargue R, Gaveau MA, Lebehot A (1984) Internal state populations in supersonic free jets and molecular beams. In: Oguchi H (ed) Rarefied gas dynamics, proceedings of the 14th international symposium, vol 2. Tokyo University Press, Tokyo, pp 551–566Google Scholar
  10. Chernyi GG, Losev SA, Macheret SO, Potapkin BV (2002) Physical and chemical processes in gas dynamics: cross sections and rate constants for physical and chemical processes, vol 1. Progress in astronautics and aeronautics, vol 196, American Institute for Aeronautics and AstronauticsGoogle Scholar
  11. Dedrick J, Boswell RW, Audier P, Rabat H, Hong D, Charles C (2011) Plasma propagation of a 13.56 MHz asymmetric surface barrier discharge in atmospheric pressure air. J Phys D Appl Phys 44(20):205202CrossRefGoogle Scholar
  12. Fisher SS, Bharathan D (1973) Glow-discharge flow visualization in low-density free jets. J Spacecr Rockets 10(10):658–662CrossRefGoogle Scholar
  13. Fomin VM, Tretyakov PK, Taran JP (2004) Flow control using various plasma and aerodynamics approaches (short review). Aerosp Sci Technol 8(5):411–21CrossRefGoogle Scholar
  14. Gnemmi P, Rey C (2009) Plasma actuation for the control of a supersonic projectile. J Spacecr Rockets 46(5):989–998CrossRefGoogle Scholar
  15. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95CrossRefGoogle Scholar
  16. Joussot R, Hong D, Rabat H, Boucinha V, Weber-Rozenbaum R, Leroy-Chesneau A (2010) Thermal characterization of a DBD plasma actuator: dielectric temperature measurements using infrared thermography. In: AIAA paper no. 2010-5102Google Scholar
  17. Joussot R, Leroy A, Weber R, Rabat H, Loyer S, Hong D (2013) Plasma morphology and induced airflow characterization of a DBD actuator with serrated electrode. J Phys D Appl Phys 46(12):125204CrossRefGoogle Scholar
  18. Kline SJ, McClintock FA (1953) Describing uncertainties in single-sample experiments. Mech Eng 75(1):3–8Google Scholar
  19. Kogan MN (1969) Rarefied gas dynamics. Plenum Press, New YorkCrossRefGoogle Scholar
  20. Kuo SP (2007) Plasma mitigation of shock wave: experiments and theory. Shock Waves 17(4):225–39CrossRefGoogle Scholar
  21. Lago V, Lengrand JC, Menier E, Elizarova TG, Khokhlov AA (2008) Physical interpretation of the influence of a DC discharge on a supersonic rarefied flow over a flat plate. AIP Conf Proc 1084(1):901–906Google Scholar
  22. Lago V, Joussot R, Parisse JD (2014) Influence of the ionization rate of a plasma discharge applied to the modification of a supersonic low Reynolds number flow field around a cylinder. J Phys D Appl Phys 47(12):125,202CrossRefGoogle Scholar
  23. Léger L, Depussay E, Lago V (2009) DC surface discharge characteristics in Mach 2 rarefied airflow. IEEE Trans Dielectr Electr Insul 16(2):396–403CrossRefGoogle Scholar
  24. Lengrand JC (1974) Mesure des températures de rotation dans l’azote à basse densité par sonde à faisceau électronique. Application à l’étude des écoulements. Ph.D. thesis, Université Paris VI, FranceGoogle Scholar
  25. Leonov SB (2011) Review of plasma-based methods for high-speed flow control. AIP Conf Proc 1376:498–502Google Scholar
  26. Leonov SB, Yarantsev DA (2008) Near-surface electrical discharge in supersonic airflow: properties and flow control. J Propul Power 24(6):1168–1181CrossRefGoogle Scholar
  27. Macheret SO, Shneider MN, Miles RB (2004) Magneto-hydrodynamic and electrohydrodynamic control of hypersonic flows of weakly ionized plasma. AIAA J 42(7):1378–1387CrossRefGoogle Scholar
  28. Mahadevan S, Raja LL (2010) Simulations of direct-current air glow discharge at pressures \(\sim\)1 Torr: discharge model validation. J Appl Phys 107(9):093304CrossRefGoogle Scholar
  29. Markelov GN, Kudryavtsev AN, Ivanov MS (2000) Continuum and kinetic simulation of laminar separated flow at hypersonic speeds. J Spacecr Rockets 37(4):499–506CrossRefGoogle Scholar
  30. McCroskey WJ, Bogdonoff SM, McDougall JG (1966) An experimental model for the sharp flat plate in rarefied hypersonic flow. AIAA J 4(9):1580–1587CrossRefGoogle Scholar
  31. Menier E (2007) Influence d’une décharge électrique continue sur un écoulement supersonique raréfié. Ph.D. thesis, Université d’Orléans, FranceGoogle Scholar
  32. Menier E, Lengrand JC, Depussay E, Lago V, Leger L (2006) Direct Simulation Monte Carlo method applied to the ionic wind in supersonic rarefied conditions. In: AIAA paper no. 2006–3343Google Scholar
  33. Menier E, Leger L, Depussay E, Lago V, Artana G (2007) Effect of a DC discharge on the supersonic rarefied air flow over a flat plate. J Phys D Appl Phys 40(3):695–701CrossRefGoogle Scholar
  34. Minkina W, Dudzik S (2009) Infrared thermography: errors and uncertainties. Wiley, ChichesterCrossRefGoogle Scholar
  35. Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9(3):10–20CrossRefGoogle Scholar
  36. Parisse JD, Léger L, Depussay E, Lago V, Burtschell Y (2009) Comparison between Mach 2 rarefied airflow modification by an electrical discharge and numerical simulation of airflow modification by surface heating. Phys Fluids 21(10):106,103CrossRefGoogle Scholar
  37. Raizer YP (1991) Gas discharge physics. Springer, BerlinCrossRefGoogle Scholar
  38. Roth JR (2003) Aerodynamic flow acceleration using paraelectric and peristaltic electrohydrodynamic effects of a one atmosphere uniform glow discharge plasma. Phys Plasmas 10(5):2117–2126CrossRefGoogle Scholar
  39. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–5CrossRefGoogle Scholar
  40. Semenov VE, Bondarenko VG, Gildenburg VB, Gubchenko VM, Smirnov AI (2002) Weakly ionized plasmas in aerospace applications. Plasma Phys Control Fusion 44(12B):B293–305CrossRefGoogle Scholar
  41. Shang JS, Kimmel RL, Menart J, Surzhikov ST (2008) Hypersonic flow control using surface plasma actuator. J Propul Power 24(5):923–934CrossRefGoogle Scholar
  42. Shin J, Narayanaswamy V, Raja L, Clemens NT (2007) Characterization of a direct-current glow discharge plasma actuator in low-pressure supersonic flow. AIAA J 45(7):1596–1605CrossRefGoogle Scholar
  43. Springer GS (1971) Heat transfer in rarefied gas. In: Irvine TF, Hartnett JP (eds) Advances in heat transfer, vol 7. Academic Press, New York, pp 163–218Google Scholar
  44. Terlouw JP, Vogelaar MGR (2012) Kapteyn Package, version 2.2. Kapteyn Astronomical Institute, University of Groningen, The Netherlands. Available from
  45. Wang L, Luo ZB, Xia ZX, Liu B, Deng X (2012) Review of actuators for high speed active flow control. Sci China Technol Sci 55(8):2225–2240CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Romain Joussot
    • 1
    Email author
  • Viviana Lago
    • 1
  • Jean-Denis Parisse
    • 2
  1. 1.ICARECNRS, UPR 3021Orléans cedex 2France
  2. 2.IUSTIAix-Marseille Université/CNRS, UMR 7343Marseille cedex 13France

Personalised recommendations