Experiments in Fluids

, 56:83 | Cite as

A low-cost, precise piezoelectric droplet-on-demand generator

Research Article


We present the design of a piezoelectric droplet-on-demand generator capable of producing droplets of highly repeatable size ranging from 0.5 to 1.4 mm in diameter. The generator is low cost and simple to fabricate. We demonstrate the manner in which droplet diameter can be controlled through variation of the piezoelectric driving waveform parameters, outlet pressure, and nozzle diameter.

Supplementary material

348_2015_1950_MOESM1_ESM.pdf (1.1 mb)
Electronic supplementary material 1 (PDF 1132 kb)


  1. Bransky A, Korin N, Khoury M, Levenberg S (2009) A microfluidic droplet generator based on a piezoelectric actuator. Lab Chip 9(4):516–520CrossRefGoogle Scholar
  2. Bush JWM (2015) Pilot-wave hydrodynamics. Annu Rev Fluid Mech 47(1):269–292CrossRefMathSciNetGoogle Scholar
  3. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 6:679–698CrossRefGoogle Scholar
  4. Castrejón-Pita JR, Martin GD, Hoath SD, Hutchings IM (2008) A simple large-scale droplet generator for studies of inkjet printing. Rev Sci Instrum 79(7):075108CrossRefGoogle Scholar
  5. Chen AU, Basaran OA (2002) A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production. Phys Fluids 14:L1–L4CrossRefGoogle Scholar
  6. Cheng S, Chandra S (2003) A pneumatic droplet-on-demand generator. Exp Fluids 34(6):755–762CrossRefGoogle Scholar
  7. Couder Y, Fort E (2006) Single particle diffraction and interference at a macroscopic scale. Phys Rev Lett 97(154):154101CrossRefGoogle Scholar
  8. Dong H, Carr WW, Morris JF (2006) An experimental study of drop-on-demand drop formation. Phys Fluids 18(7):072102CrossRefGoogle Scholar
  9. Eddi A, Fort E, Moisy F, Couder Y (2009) Unpredictable tunneling of a classical wave-particle association. Phys Rev Lett 102(24):240401CrossRefGoogle Scholar
  10. Eddi A, Decelle A, Fort E, Couder Y (2009) Archimedean lattices in the bound states of wave interacting particles. Europhys Lett 87:56002CrossRefGoogle Scholar
  11. Fan KC, Chen JY, Wang CH, Pan WC (2008) Development of a drop-on-demand droplet generator for one-drop-fill technology. Sens Actuators A Phys 147(2):649–655CrossRefGoogle Scholar
  12. Fort E, Eddi A, Boudaoud A, Moukhtar J, Couder Y (2010) Path-memory induced quantization of classical orbits. Proc Natl Acad Sci 107(41):17515–17520CrossRefGoogle Scholar
  13. Gilet T, Bush JWM (2012) Droplets bouncing on a wet, inclined surface. Phy Fluids 24(12):122103CrossRefGoogle Scholar
  14. Goghari AA, Chandra S (2008) Producing droplets smaller than the nozzle diameter by using a pneumatic drop-on-demand droplet generator. Exp Fluids 44(1):105–114CrossRefGoogle Scholar
  15. Harris DM, Moukhtar J, Fort E, Couder Y, Bush JWM (2013) Wavelike statistics from pilot-wave dynamics in a circular corral. Phys Rev E 88(1):011001CrossRefGoogle Scholar
  16. Hawke SR (2006) Effects of a thin, flexible nozzle on droplet formation and impingement. Ph.D. thesis, Oregon State UniversityGoogle Scholar
  17. Meacham JM, Varady MJ, Degertekin FL, Fedorov AG (2005) Droplet formation and ejection from a micromachined ultrasonic droplet generator: visualization and scaling. Phys Fluids 17(10):100605CrossRefGoogle Scholar
  18. Mehdizadeh NZ, Chandra S, Mostaghimi J (2004) Formation of fingers around the edges of a drop hitting a metal plate with high velocity. J Fluid Mech 510:353–373CrossRefMATHGoogle Scholar
  19. Moláček J, Bush JWM (2013) Drops walking on a vibrating bath: towards a hydrodynamic pilot-wave theory. J Fluid Mech 727:612–647CrossRefMATHGoogle Scholar
  20. Perçin G, Khuri-Yakub BT (2003) Piezoelectric droplet ejector for ink-jet printing of fluids and solid particles. Rev Sci Instrum 74(2):1120–1127CrossRefGoogle Scholar
  21. Protiere S, Boudaoud A, Couder Y (2006) Particle–wave association on a fluid interface. J Fluid Mech 554:85–108CrossRefMATHMathSciNetGoogle Scholar
  22. Reis N, Ainsley C, Derby B (2005) Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors. J Appl Phys 97(9):094903CrossRefGoogle Scholar
  23. Shin P, Lee S, Sung J, Kim JH (2011) Operability diagram of drop formation and its response to temperature variation in a piezoelectric inkjet nozzle. Microelectron Reliab 51(2):437–444CrossRefGoogle Scholar
  24. Switzer GL (1991) A versatile system for stable generation of uniform droplets. Rev Sci Instrum 62(11):2765–2771CrossRefGoogle Scholar
  25. Terwagne D (2011) Bouncing droplets, the role of deformations. Ph.D. thesis, Université de LiègeGoogle Scholar
  26. Terwagne D, Ludewig F, Vandewalle N, Dorbolo S (2013) The role of the droplet deformations in the bouncing droplet dynamics. Phys Fluids 25(12):122101CrossRefGoogle Scholar
  27. Tsai MH, Hwang WS et al (2008) Effects of pulse voltage on the droplet formation of alcohol and ethylene glycol in a piezoelectric inkjet printing process with bipolar pulse. Mater Trans 49(2):331–338CrossRefGoogle Scholar
  28. Wind-Willassen Ø, Moláček J, Harris DM, Bush JWM (2013) Exotic states of bouncing and walking droplets. Phys Fluids 25(082):082002CrossRefGoogle Scholar
  29. Yang JC, Chien W, King M, Grosshandler WL (1997) A simple piezoelectric droplet generator. Exp Fluids 23(5):445–447CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Daniel M. Harris
    • 1
  • Tanya Liu
    • 2
  • John W. M. Bush
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations