Experiments in Fluids

, 56:52 | Cite as

Visualization of dynamic boiling processes using high-speed optical coherence tomography

  • Lars KirstenEmail author
  • Thomas Domaschke
  • Clemens Schneider
  • Julia Walther
  • Sven Meissner
  • Rainer Hampel
  • Edmund Koch
Research Article


Investigating microscale nucleate boiling processes with high heat flux requires experimental visualization and quantification with high spatial resolution in the micrometer range as well as a sufficient temporal resolution. Numerous measurement techniques are employed for providing comprehensive experimental data on microscale boiling processes and other multiphase flows. In this context, optical coherence tomography (OCT) has been introduced recently for the visualization of quasistatic growing vapor bubbles in turbid fluids with a high spatial resolution. Since OCT detects backscattered light, only one optical access is necessary and OCT is feasible for measurements in turbid media, where other imaging techniques fail. Within this study, a high-speed OCT system is utilized for visualizing dynamic nucleate boiling processes at a heated surface with a frame rate of about 234 Hz. The bubble contour is extracted out of the OCT images using segmentation and tracking algorithm, which provide bubble contours and the course of the bubble area for individual vapor bubbles over time. Additionally, high-speed Doppler OCT imaging is presented revealing the velocity component of the fluid in beam direction up to 30 mm/s unambiguously. The present proof of principle study suggests high-speed OCT imaging as a promising and alternative technique for the simultaneous measurement of bubble geometries and fluid velocities in dynamic processes with a high spatial resolution of 16 µm. Due to the ongoing development and availability of ultra high-speed OCT systems, the perspective temporal resolution will be comparable to the frame rates provided by presently established techniques, such as particle image velocimetry or high-speed camera imaging.


Optical Coherence Tomography Particle Image Velocimetry Vapor Bubble Optical Coherence Tomography Image Particle Tracking Velocimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was funded by the German Federal Ministry of Education and Research (BMBF) within the joint project “fundamental research Energy 2020+”, project number 02NUK010C and 02NUK010l. The corresponding author was jointly supported by the European Social Fund and Micro-Epsilon Optronic GmbH, Germany.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

Online Resource 1 (ESM_1.mpg) The sequence shows 384 pairs of OCT cross sections (right) and camera images (left) of a 1.64 s long image sequence. The frame rate is 234 Hz corresponding to an acquisition time of 4.3 ms per OCT cross section. The scale bar in each image represents 1 mm in every direction for camera and OCT images (refractive index of 1 assumed). The lateral position of the OCT cross section is in the middle of the corresponding camera image, which is indicated by the red vertical line in each camera image. (MPG 19014 kb)


  1. Ahmadi R, Ueno T, Okawa T (2012) Bubble dynamics at boiling incipience in subcooled upward flow boiling. Int J Heat Mass Transf 55(1–3):488–497. doi: 10.1016/j.ijheatmasstransfer.2011.09.050 CrossRefGoogle Scholar
  2. Burgmann S, Blank M, Panchenko O, Wartmann J (2013) µPIV measurements of two-phase flows of an operated direct methanol fuel cell. Exp Fluids 54(5):1513. doi: 10.1007/s00348-013-1513-7 CrossRefGoogle Scholar
  3. Chen C, Menon PG, Kowalski W, Pekkan K (2013) Time-resolved OCT-µPIV: a new microscopic PIV technique for noninvasive depth-resolved pulsatile flow profile acquisition. Exp Fluids 54:1426. doi: 10.1007/s00348-012-1426-x CrossRefGoogle Scholar
  4. Dahikar SK, Sathe MJ, Joshi JB (2010) Investigation of flow and temperature patterns in direct contact condensation using PIV, PLIF and CFD. Chem Eng Sci 65(16):4606–4620. doi: 10.1016/j.ces.2010.05.004 CrossRefGoogle Scholar
  5. Dominguez-Ontiveros E, Fortenberry S, Hassan YA (2010) Experimental observations of flow modifications in nanofluid boiling utilizing particle image velocimetry. Nucl Eng Des 240(2):299–304. doi: 10.1016/j.nucengdes.2009.09.017 CrossRefGoogle Scholar
  6. Driscoll DF, Bistrian BR, Demmelmair H, Koletzko B (2008) Pharmaceutical and clinical aspects of parenteral lipid emulsions in neonatology. Clin Nutr 27:497–503. doi: 10.1016/j.clnu.2008.05.003 CrossRefGoogle Scholar
  7. Driscoll DF, Ling P, Bistrian BR (2009) Pharmacopeial compliance of fish oil-containing parenteral lipid emulsion mixtures: globule size distribution (GSD) and fatty acid analyses. Int J Pharm 379:125–130. doi: 10.1016/j.ijpharm.2009.06.021 CrossRefGoogle Scholar
  8. Duan X, Phillips B, McKrell T, Buongiorno J (2013) Synchronized high-speed video, infrared thermometry, and particle image velocimetry data for validation of interface-tracking simulations of nucleate boiling phenomena. Exp Heat Transf 26(2–3):169–197. doi: 10.1080/08916152.2012.736837 CrossRefGoogle Scholar
  9. Hassan YA, Estrada-Perez C, Yoo JS (2014) Measurement of subcooled flow boiling using particle tracking velocimetry and infrared thermographic technique. Nucl Eng Des 268:185–190. doi: 10.1016/j.nucengdes.2013.04.044 CrossRefGoogle Scholar
  10. Hu H, Jin Z, Nocera D, Lum C, Koochesfahani M (2010) Experimental investigations of micro-scale flow and heat transfer phenomena by using molecular tagging techniques. Meas Sci Technol 21(8):085401. doi: 10.1088/0957-0233/21/8/085401 CrossRefGoogle Scholar
  11. Huber R, Adler DC, Fujimoto JG (2006a) Buffered fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt Lett 31(20):2975–2977. doi: 10.1364/OL.31.002975 CrossRefGoogle Scholar
  12. Huber R, Wojtkowski M, Fujimoto JG (2006b) Fourier domain mode locking (fdml): a new laser operating regime and applications for optical coherence tomography. Opt Express 14(8):3225–3237. doi: 10.1364/OE.14.003225 CrossRefGoogle Scholar
  13. Jiang YY, Osada H, Inagaki M, Horinouchi N (2013) Dynamic modeling on bubble growth, detachment and heat transfer for hybrid-scheme computations of nucleate boiling. Int J Heat Mass Transf 56(12):640–652. doi: 10.1016/j.ijheatmasstransfer.2012.09.006 CrossRefGoogle Scholar
  14. Jung S, Kim H (2014) An experimental method to simultaneously measure the dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface. Int J Heat Mass Transf 73:365–375. doi: 10.1016/j.ijheatmasstransfer.2014.02.014 CrossRefGoogle Scholar
  15. Khodaparast S, Borhani N, Tagliabue G, Thome JR (2013) A micro particle shadow velocimetry (µpsv) technique to measure flows in microchannels. Exp Fluids 54(2):1474. doi: 10.1007/s00348-013-1474-x CrossRefGoogle Scholar
  16. Kim H (2011) Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review. Nanoscale Res Lett 6:415. doi: 10.1186/1556-276X-6-415 CrossRefGoogle Scholar
  17. Kim BJ, Liu YZ, Sung HJ (2004) Micro piv measurement of two-fluid flow with different refractive indices. Meas Sci Technol 15(6):1097. doi: 10.1088/0957-0233/15/6/008 CrossRefGoogle Scholar
  18. Kim SJ, McKrell T, Buongiorno J, Hu L (2010) Subcooled flow boiling heat transfer of dilute alumina, zinc oxide and diamond nanofluids at atmospheric pressure. Nucl Eng Des 240:1186–1194. doi: 10.1016/j.nucengdes.2010.01.020 CrossRefGoogle Scholar
  19. Kirsten L, Gaertner M, Schnabel C, Meissner S, Koch E (2013a) Four-dimensional imaging of murine subpleural alveoli using high-speed optical coherence tomography. J Biophotonics 6(2):148–152. doi: 10.1002/jbio.201200027 CrossRefGoogle Scholar
  20. Kirsten L, Schnabel C, Gaertner M, Koch E (2013b) Four-dimensional optical coherence tomography imaging of total liquid ventilated rats. Proc SPIE 8802:88020F–88020F-6. doi: 10.1117/12.2032434
  21. Magnini M, Pulvirenti B, Thome J (2013) Numerical investigation of hydro-dynamics and heat transfer of elongated bubbles during flow boiling in a microchannel. Int J Heat Mass Transf 59:451–471. doi: 10.1016/j.ijheatmasstransfer.2012.12.010 CrossRefGoogle Scholar
  22. Meissner S, Herold J, Kirsten L, Schneider C, Koch E (2012) 3d optical coherence tomography as new tool for microscopic investigations of nucleate boiling on heated surfaces. Int J Heat Mass Transf 55(21–22):5565–5569. doi: 10.1016/j.ijheatmasstransfer.2012.05.039 CrossRefGoogle Scholar
  23. Mujat M, Ferguson RD, Iftima N, Hammer DX, Nedyalkov I, Wosnik M, Legner H (2013) Optical coherence tomography-based micro-particle image velocimetry. Opt Lett 38(22):4558–4561. doi: 10.1364/OL.38.004558 CrossRefGoogle Scholar
  24. Natrajan VK, Christensen KT (2009) Two-color laser-induced fluorescent thermometry for microfluidic systems. Meas Sci Technol 20(1):015401. doi: 10.1088/0957-0233/20/1/015401 CrossRefGoogle Scholar
  25. Potsaid B, Jayaraman V, Fujimoto JG, Jiang J, Heim PJS, Cable AE (2012) Mems tunable vcsel light source for ultrahigh speed 60khz–1mhz axial scan rate and long range centimeter class oct imaging. Proc SPIE 8213:82130M–82130M-8. doi: 10.1117/12.911098
  26. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. doi: 10.1038/nmeth.2019 CrossRefGoogle Scholar
  27. Schneider C, Hampel R, Traichel A, Antonio H, Meissner S, Koch E (2012a) Experimental investigation of nucleate boiling on capillary tubes under pwr specific subcooling and flow parameters. Proc 20th international conference on nuclear engineering and the ASME 2012 power conference 5:349–356. doi: 10.1115/ICONE20-POWER2012-54640
  28. Schneider CA, Rasband WS, Eliceiri KW (2012b) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675. doi: 10.1038/nmeth.2089 CrossRefGoogle Scholar
  29. Teodori E, Moita A, Moreira A (2013) Characterization of pool boiling mechanisms over micro-patterned surfaces using PIV. Int J Heat Mass Transf 66:261–270. doi: 10.1016/j.ijheatmasstransfer.2013.07.033 CrossRefGoogle Scholar
  30. Trasischker W, Werkmeister RM, Zotter S, Baumann B, Torzicky T, Pircher M, Hitzenberger CK (2013) In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography. J Biomed Opt 18(11):116010. doi: 10.1117/1.JBO.18.11.116010 CrossRefGoogle Scholar
  31. Tschumperle D, Deriche R (2005) Vector-valued image regularization with pdes: a common framework for different applications. Pattern Anal Mach Intell IEEE Trans 27(4):506–517. doi: 10.1109/TPAMI.2005.87 CrossRefGoogle Scholar
  32. Walther J, Koch E (2011) Enhanced joint spectral and time domain optical coherence tomography for quantitative flow velocity measurement. Proc SPIE 8091:80910L–80910L-7. doi: 10.1117/12.889685
  33. Walther J, Mueller G, Morawietz H, Koch E (2010) Signal power decrease due to fringe washout as an extension of the limited doppler flow measurement range in spectral domain optical coherence tomography. J Biomed Opt 15(4):041511. doi: 10.1117/1.3466578 CrossRefGoogle Scholar
  34. Walther J, Cimalla P, Koch E (2011) Lateral resonant doppler imaging for quantitative flow extraction in spectral domain optical coherence tomography. Proc SPIE 7889:788914–788914-6. doi: 10.1117/12.874522
  35. Wereley ST, Meinhart CD (2010) Recent advances in micro-particle image velocimetry. Annu Rev Fluid Mech 42(1):557–576. doi: 10.1146/annurev-fluid-121108-145427 CrossRefGoogle Scholar
  36. Wieser W, Biedermann BR, Klein T, Eigenwillig CM, Huber R (2010) Multi-megahertz oct: high quality 3d imaging at 20 million a-scans and 4.5 gvoxels per second. Opt Express 18(14):14685–14704. doi: 10.1364/OE.18.014685 CrossRefGoogle Scholar
  37. Williams SJ, Park C, Wereley ST (2010) Advances and applications on micro fluidic velocimetry techniques. Microfluid Nanofluid 8(6):709–726. doi: 10.1007/s10404-010-0588-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lars Kirsten
    • 1
    Email author
  • Thomas Domaschke
    • 1
  • Clemens Schneider
    • 2
  • Julia Walther
    • 1
  • Sven Meissner
    • 1
    • 3
  • Rainer Hampel
    • 2
  • Edmund Koch
    • 1
  1. 1.Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Faculty of Medicine Carl Gustav CarusTechnische Universität DresdenDresdenGermany
  2. 2.Institute for Process Technology, Process Automation and Measuring TechniqueUniversity of Applied Sciences Zittau/GörlitzZittauGermany
  3. 3.EVONTA-Technology GmbHDresdenGermany

Personalised recommendations