Experiments in Fluids

, 56:8 | Cite as

Optical flow for incompressible turbulence motion estimation

  • Xu Chen
  • Pascal Zillé
  • Liang Shao
  • Thomas Corpetti
Research Article

Abstract

We propose in this paper a new formulation of optical flow dedicated to 2D incompressible turbulent flows. It consists in minimizing an objective function constituted by an observation term and a regularization one. The observation term is based on the transport equation of the passive scalar field. For non-fully resolved scalar images, we propose to use the mixed model in large eddy simulation to determine the interaction between large scales and unresolved ones. The regularization term is based on the continuity equation of 2D incompressible flows. Compared to prototypical method, this regularizer preserves more vortex structures by eliminating constraints over the vorticity field. The evaluation of the proposed formulation is done over synthetic and experimental images, and the improvements in term of estimation are discussed.

References

  1. Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23(1):261–304CrossRefGoogle Scholar
  2. Baker S, Scharstein D, Lewis J, Roth S, Black MJ, Szeliski R (2011) A database and evaluation methodology for optical flow. Int J Comput Vis 92(1):1–31CrossRefGoogle Scholar
  3. Bardina J, Ferziger J, Reynold W (1980) Improved subgrid-scale models for large-eddy simulation. In: American institute of aeronautics and astronautics, fluid and plasma dynamics conference, 13th, Snowmass, Colo., July 14–16, 1980, 10 p., vol 1Google Scholar
  4. Bardina J, Ferziger J, Reynold W (1983) Improved turbulence models based on large eddy simulation of homogeneous, incompressible turbulent flows. Stanford Univ, Report 1Google Scholar
  5. Barron JL, Fleet DJ, Beauchemin SS (1994) Performance of optical flow techniques. Int J Comput Vis 12(1):43–77CrossRefGoogle Scholar
  6. Batchelor G et al (1959) Small-scale variation of convected quantities like temperature in turbulent fluid. J Fluid Mech 5(1):113–133CrossRefMATHMathSciNetGoogle Scholar
  7. Becker F, Wieneke B, Petra S, Schroder A, Schnorr C (2012) Variational adaptive correlation method for flow estimation. Image Process IEEE Trans 21(6):3053–3065CrossRefMathSciNetGoogle Scholar
  8. Bergen JR, Burt PJ, Hingorani R, Peleg S (1992) A three-frame algorithm for estimating two-component image motion. IEEE Trans Pattern Anal Mach Intell 14(9):886–896CrossRefGoogle Scholar
  9. Bertoglio JP (1985) A stochastic subgrid model for sheared turbulence. In: macroscopic modelling of turbulent flows. Springer, Berlin, pp 100–119CrossRefGoogle Scholar
  10. Brox T, Bruhn A, Papenberg N, Weickert J (2004) High accuracy optical flow estimation based on a theory for warping. Springer, Berlin, pp 25–36Google Scholar
  11. Burt P (1988) Smart sensing within a pyramid vision machine. Proc IEEE 76(8):1006–1015CrossRefGoogle Scholar
  12. Carlier J, Wieneke B (2005) Report 1 on production and diffusion of fluid mechanics images and data. fluid project deliverable 1.2. European ProjectFluid image analisys and description(FLUID)-http://www fluid irisa fr 47Google Scholar
  13. Cassisa C, Simoëns S, Prinet V, Shao L (2011) Subgrid scale formulation of optical flow for the study of turbulent flow. Exp Fluids 51(6):1739–1754CrossRefGoogle Scholar
  14. Corpetti T, Mémin É, Pérez P (2002) Dense estimation of fluid flows. Pattern Anal Mach Intell IEEE Trans 24(3):365–380CrossRefGoogle Scholar
  15. Corpetti T, Heitz D, Arroyo G, Memin E, Santa-Cruz A (2006) Fluid experimental flow estimation based on an optical-flow scheme. Exp Fluids 40(1):80–97CrossRefGoogle Scholar
  16. Deardorff JW (1970) A numerical study of three-dimensional turbulent channel flow at large reynolds numbers. J Fluid Mech 41(2):453–480CrossRefMATHGoogle Scholar
  17. Dérian P, Héas P, Herzet C, Mémin É (2012) Wavelet-based fluid motion estimation. In: scale space and variational methods in computer vision. Springer, Berlin, pp 737–748CrossRefGoogle Scholar
  18. Deriche R (1993) Recursively implementating the Gaussian and its derivatives, Research report 1893, INRIA, FranceGoogle Scholar
  19. Fleet D, Weiss Y (2006) Optical flow estimation. In: handbook of mathematical models in computer vision. Springer, Berlin, pp 237–257CrossRefGoogle Scholar
  20. Guichard F, Rudin L (1996) Accurate estimation of discontinuous optical flow by minimizing divergence related functionals. In: image processing, 1996. Proceedings., international conference on, IEEE, vol 1, pp 497–500Google Scholar
  21. Héas P, Herzet C, Memin E, Heitz D, Mininni PD (2013) Bayesian estimation of turbulent motion. Pattern Anal Mach Intell 35(6):1343–1356CrossRefGoogle Scholar
  22. Heitz D, Héas P, Mémin E, Carlier J (2008) Dynamic consistent correlation-variational approach for robust optical flow estimation. Exp Fluids 45(4):595–608CrossRefGoogle Scholar
  23. Heitz D, Mémin E, Schnörr C (2010) Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp Fluids 48(3):369–393CrossRefGoogle Scholar
  24. Horn B, Schunck B (1981) Determining optical flow. Artif Intell 17(1):185–203CrossRefGoogle Scholar
  25. Jullien MC, Castiglione P, Tabeling P (2000) Experimental observation of Batchelor dispersion of passive tracers. Phys Rev Lett 85(17):3636CrossRefGoogle Scholar
  26. Kadri-Harouna S, Dérian P, Héas P, Memin E (2013) Divergence-free wavelets and high order regularization. Int J Comput Vis 103(1):80–99CrossRefMATHMathSciNetGoogle Scholar
  27. Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers. In: Dokl. Akad. Nauk SSSR, vol 30, pp 299–303Google Scholar
  28. Liu T, Shen L (2008) Fluid flow and optical flow. J Fluid Mech 614(253):1MathSciNetGoogle Scholar
  29. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674–693CrossRefMATHGoogle Scholar
  30. Papadakis N, Mémin É (2008) Variational assimilation of fluid motion from image sequence. SIAM J Imaging Sci 1(4):343–363CrossRefMATHGoogle Scholar
  31. Paret J, Tabeling P (1998) Intermittency in the two-dimensional inverse cascade of energy: experimental observations. Phys Fluids 10:3126CrossRefGoogle Scholar
  32. Pope SB (2000) Turbulent flows. Cambridge university press, CambridgeCrossRefMATHGoogle Scholar
  33. Ruhnau P, Kohlberger T, Schnörr C, Nobach H (2005) Variational optical flow estimation for particle image velocimetry. Exp Fluids 38(1):21–32CrossRefGoogle Scholar
  34. Sagaut P (2000) Large eddy simulation for incompressible flows, vol 3. Springer, BerlinGoogle Scholar
  35. Shao L, Sarkar S, Pantano C (1999) On the relationship between the mean flow and subgrid stresses in large eddy simulation of turbulent shear flows. Phys Fluids (1994-present) 11(5):1229–1248CrossRefMATHGoogle Scholar
  36. Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiment*. Mon Weather Rev 91(3):99–164CrossRefGoogle Scholar
  37. Su LK, Dahm WJA (1996) Scalar imaging velocimetry measurements of the velocity gradient tensor field in turbulent flows. II. Experimental results. Phys Fluids 8(7):1883–1906CrossRefGoogle Scholar
  38. Yuan J, Schnörr C, Mémin E (2007) Discrete orthogonal decomposition and variational fluid flow estimation. J Math Imaging Vis 28(1):67–80CrossRefGoogle Scholar
  39. Zille P, Corpetti T, Shao L, Xu C (2014) Observation models based on scale interactions for optical flow estimation. IEEE Trans Image Process 23(8):3281–3293CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xu Chen
    • 1
  • Pascal Zillé
    • 1
  • Liang Shao
    • 1
  • Thomas Corpetti
    • 2
  1. 1.Laboratoire de Mécanique des Fluides et d’AcoustiqueLyonFrance
  2. 2.Laboratoire COSTEL UMR 6554 LETGRennesFrance

Personalised recommendations