Experiments in Fluids

, 55:1824 | Cite as

Experimental determination of three-dimensional finite-time Lyapunov exponents in multi-component flows

  • Samuel G. Raben
  • Shane D. Ross
  • Pavlos P. Vlachos
Letter

Abstract

We present an experimental approach for estimating finite-time Lyapunov exponent fields (FTLEs) in three-dimensional multi-component or multi-phase flows. From time-resolved sequences of particle images, we directly compute the flow map and coherent structures, while avoiding and outperforming the computationally costly numerical integration. Performing this operation independently on each flow component enables the determination of three-dimensional Lagrangian coherent structures (LCSs) without any bias from the other components. The locations of concurrent LCSs for different flow elements (e.g., passive tracers, inertial particles, bubbles, or active particles) can provide new insight into the interpenetrating FTLE structure in complex flows.

References

  1. Basdevant C, Philipovitch T (1994) On the validity of the “Weiss criterion” in two-dimensional turbulence. Phys D Nonlinear Phenom 73(1)17–30Google Scholar
  2. Bec J, Biferala L, Boffetta G, Cencini M, Musacchio S, Toschi6 F (2006) Lyapunov exponents of heavy particles in turbulence. Phys Fluids 18. http://scitation.aip.org/content/aip/journal/pof2/18/9/10.1063/1.2349587
  3. Brunton S, Rowley C (2010) Fast computation of finite-time Lyapunov exponent fields for unsteady flows. Chaos Interdiscip J Nonlinear Sci 1–12. doi:10.1063/1.3270044. http://link.aip.org/link/?CHAOEH/20/017503/1
  4. Cardwell ND, Vlachos PP, Thole Ka (2011) A multi-parametric particle-pairing algorithm for particle tracking in single and multiphase flows. Meas Sci Technol 22(10):105406. doi:10.1088/0957-0233/22/10/105406. http://stacks.iop.org/0957-0233/22/i=10/a=105406?key=crossref.6646d1e538c3c7e02789a29738af16be
  5. Eaton JK (1994) Preferential concentration of particles by turbulence. Int J Multiph Flow 20:169. http://link.aip.org/link/?PFADEB/3/1169/1
  6. Elsinga GEGE, Scarano F, Wieneke B, Oudheusden BWV, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41(6):933. doi:10.1007/s00348-006-0212-z CrossRefGoogle Scholar
  7. Guala M, Liberzon A, Hoyer K (2008) Experimental study on clustering of large particles in homogeneous turbulent flow. J Turbul 9(34):1. doi:10.1080/14685240802441118 Google Scholar
  8. Haller G (2001) Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Phys D 149:248MathSciNetCrossRefMATHGoogle Scholar
  9. Haller G (2005) An objective definition of a vortex. J Fluid Mech 525:1. doi:10.1017/S0022112004002526 MathSciNetCrossRefMATHGoogle Scholar
  10. Haller G, Sapsis T (2008) Where do inertial particles go in fluid flows? Phys D Nonlinear Phenom 237(5):573–583. doi:10.1016/j.physd.2007.09.027
  11. Haller G, Yuan G (2000) Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys D 147:352MathSciNetCrossRefMATHGoogle Scholar
  12. Herman G, Lent A (1976) Iterative reconstruction algorithms. Comput Biol Med 6(3):273. http://www.sciencedirect.com/science/article/pii/0010482576900664
  13. Lekien F, Ross SD (2010) The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds. Chaos 20:017505. doi:10.1063/1.3278516
  14. Mathur M, Haller G, Peacock T, Ruppert-felsot JE, Swinney HL (2007) Uncovering the Lagrangian skeleton of turbulence. Phys Rev Lett 98:1. doi:10.1103/PhysRevLett.98.144502 Google Scholar
  15. Maxey MR (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26(4):883. doi:10.1063/1.864230 CrossRefMATHGoogle Scholar
  16. Peng J, Dabiri JO (2009) Transport of inertial particles by Lagrangian coherent structures: application to predator–prey interaction in jellyfish feeding. J Fluid Mech 623:75. doi:10.1017/S0022112008005089 CrossRefMATHGoogle Scholar
  17. Raben SG, Charonko JJ, Vlachos PP (2012) Adaptive gappy proper orthogonal decomposition for particle image velocimetry data reconstruction. Meas Sci Technol 23(2):025303. doi:10.1088/0957-0233/23/2/025303. http://stacks.iop.org/0957-0233/23/i=2/a=025303?key=crossref.e5c3fe9270eba84484189ab2ad1c8278
  18. Raben SG, Ross SD, Vlachos PP (2014) Computation of finite-time Lyapunov exponents from time-resolved particle image velocimetry data. Exp Fluids 55(1):1638. doi:10.1007/s00348-013-1638-8 CrossRefGoogle Scholar
  19. Shadden SC, Dabiri JO, Marsden JE (2006) Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys Fluids 18:1MathSciNetCrossRefGoogle Scholar
  20. Shadden SC, Katija K, Rosenfeld M, Marsden JE, Dabiri JO (2007) Transport and stirring induced by vortex formation. J Fluid Mech 593:315. doi:10.1017/S0022112007008865 CrossRefMATHGoogle Scholar
  21. Squires K, Eaton J (1991) Preferential concentration of particles by turbulence. Phys Fluids A Fluid Dyn 1169(3):5. doi:10.1063/1.858045. http://link.aip.org/link/?PFADEB/3/1169/1, http://link.aip.org/link/PFADEB/v3/i5/p1169/s1&Agg=doi, http://scitation.aip.org/content/aip/journal/pofa/3/5/10.1063/1.858045
  22. Tallapragada P, Ross SD (2008) Particle segregation by Stokes number for small neutrally buoyant spheres in a fluid. Phys Rev E 78:1. doi:10.1103/PhysRevE.78.036308 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Samuel G. Raben
    • 1
  • Shane D. Ross
    • 3
  • Pavlos P. Vlachos
    • 2
  1. 1.School of PhysicsGeorgia TechAtlantaUSA
  2. 2.Mechanical EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Biomedical Engineering and MechanicsVirginia TechBlacksburgUSA

Personalised recommendations