Advertisement

Experiments in Fluids

, 55:1768 | Cite as

Synchrotron radiation microtomography of Taylor bubbles in capillary two-phase flow

  • Stephan Boden
  • Tomy dos Santos Rolo
  • Tilo Baumbach
  • Uwe Hampel
Research Article

Abstract

We report on a study to measure the three-dimensional shape of Taylor bubbles in capillaries using synchrotron radiation in conjunction with ultrafast radiographic imaging. Moving Taylor bubbles in 2-mm round and square capillaries were radiographically scanned with an ultrahigh frame rate of up to 36,000 fps and 5.6-µm pixel separation. Consecutive images were properly processed to yield 2D transmission radiographs of high contrast-to-noise ratio. Application of 3D tomographic image reconstruction disclosed the 3D bubble shape. The results provide a reference data base for development of sophisticated interface resolving CFD computations.

Keywords

Liquid Film Bubble Velocity Bubble Shape Search Beam Liquid Slug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge the German Research Foundation (DFG) for funding the present study within the project HA3088/7–1, which is embedded within the Priority Program SPP 1506 “Transport Processes at Fluidic Interfaces”. The authors further kindly acknowledge the provision of beam time by the synchrotron radiation source ANKA, and the research was partially funded by the German Federal Ministry of Education and Research by Grants 05K10CKB (UFO: Ultra fast X-ray imaging of scientific processes with on-line assessment and data-driven process control).

References

  1. Agostini B, Revellin R, Thome JR (2008) Elongated bubbles in microchannels. Part I: experimental study and modeling of elongated bubble velocity. Int J Multiph Flow 34:590–601CrossRefGoogle Scholar
  2. Aland S, Boden S, Hahn A, Klingbeil F, Weismann M, Weller S (2013) Quantitative comparison of Taylor flow simulations based on sharp-interface and diffusive-interface models. Int J Numer Methods Fluids 73:344–361Google Scholar
  3. Al-Dahhan M, Kemoun A, Cartolano AR (2006) Phase distribution in an upflow monolith reactor using computed tomography. AIChE J 52:745–753CrossRefGoogle Scholar
  4. Angeli P, Gavriilidis A (2008) Hydrodynamics of Taylor flow in small channels: a review. Proc Inst Mech Eng C J Mech Eng Sci 222:737–751CrossRefGoogle Scholar
  5. Attwood D (2006) Nanotomography come of age. Nature 442:642–643CrossRefGoogle Scholar
  6. Aussilous P, Quéré D (2000) Quick deposition of fluid on the wall of a tube. Phys Fluids 12:2367–2371CrossRefGoogle Scholar
  7. Bauer T, Roy S, Lange R, Al-Dahhan M (2005) Liquid saturation and gas-liquid distribution in multiphase monolithic reactors. Chem Eng Sci 60:3101–3106CrossRefGoogle Scholar
  8. Bretherton F (1961) The motion of long bubbles in tubes. J Fluid Mech 10:166–188CrossRefzbMATHMathSciNetGoogle Scholar
  9. Di Michiel M, Merino JM, Fernandez-Carreiras D (2005) Fast microtomography using high energy synchrotron radiation. Rev Sci Inst 76:043702CrossRefGoogle Scholar
  10. Dumitrescu DT (1943) Strömung an einer Luftblase im senkrechten Rohr. Z Angew Math Mech 23:139–149CrossRefMathSciNetGoogle Scholar
  11. Elliott JC, Dover SD (1982) X-ray microtomography. J Microsc 126:211–213CrossRefGoogle Scholar
  12. Flannery BP, Deckmann HW, Roberge WG (1987) Three-dimensional X-ray microtomography. Science 237:1439–1444CrossRefGoogle Scholar
  13. Fries DM, Trachsel F, Rohr PR (2008) Segmented gas-liquid flow characterization in rectangular microchannels. Int J Multiph Flow 34:1108–1118CrossRefGoogle Scholar
  14. Gallant RW (1967) Physical properties of hydrocarbons. 14. Propylene glycols and glycerine. Hydrocarb Process 46:201–215Google Scholar
  15. Gladden LF, Mantle MD, Sederman AJ (2006) Magnetic resonance imaging of catalysts and catalytic processes. Adv Catal 50:1–75CrossRefGoogle Scholar
  16. Han YB, Shikazono N (2009) Measurement of liquid film thickness in micro square channel. Int J Heat Fluid Flow 30:842–853CrossRefGoogle Scholar
  17. Hazel AL, Heil M (2002) The steady propagation of a semi-infinite bubble into a tube of elliptical or rectangular cross-section. J Fluid Mech 470:91–114CrossRefzbMATHGoogle Scholar
  18. Heibel AK, Vergeldt FJ, van As H, Kapteijn F, Moulijn J, Boger T (2003) Gas and liquid distribution in the monolith film flow reactor. AIChE J 49:3007–3017CrossRefGoogle Scholar
  19. Hurlburt ET, Newell TA (1996) Optical measurement of liquid film thickness and wave velocity in liquid film flows. Exp Fluids 21:357–362CrossRefGoogle Scholar
  20. Irandoust S, Andersson B (1989) Liquid film in Taylor flow through a capillary. Ind Eng Chem Res 28:1684–1688CrossRefGoogle Scholar
  21. Kak AC, Slaney M (1988) Principles of computerized tomographic imaging. IEEE Press, New YorkzbMATHGoogle Scholar
  22. Kolb WB, Cerro RL (1991) Coating the inside of a capillary of square cross section. Chem Eng Sci 46:2181–2195CrossRefGoogle Scholar
  23. Kreutzer MT, Kapteijn F, Moulijn JA, Heiszwolf JJ (2005a) Multiphase monolith reactors: chemical reaction engineering of segmented flow in microchannels. Chem Eng Sci 60:5895–5916CrossRefGoogle Scholar
  24. Kreutzer MT, Kaptejin F, Moulijn JA, Kleijn CR, Heiszwolf JJ (2005b) Inertial and interfacial effects on pressure drop of Taylor flow in capillaries. AIChE J 51:2428–2440CrossRefGoogle Scholar
  25. Mantle MD, Sederman AJ, Gladden LF, Faymahasay S, Winterbottom JM, Stitt EH (2002) Dynamic MRI visualization of two-phase flow in ceramic monolith. AIChE J 48:909–912CrossRefGoogle Scholar
  26. Mao ZS, Dukler AE (1990) The motion of Taylor bubbles in vertical tubes. I. A numerical simulation for the shape and rise velocity of Taylor bubbles in stagnant and flowing liquid. J Comput Phys 91:132–160CrossRefzbMATHGoogle Scholar
  27. Marshall H, Boden S, Lehrenfeld C, Falconi CJD, Hampel U, Reusken A, Wörner M, Bothe D (submitted 2013) Validation of interface capturing and tracking techniques with different surface tension treatments against a Taylor bubble benchmark problem. Comp FluidsGoogle Scholar
  28. Mewes D, Loser T (1999) Modeling of two-phase flow in packing and monoliths. Chem Eng Sci 54:4729–4747CrossRefGoogle Scholar
  29. Nigmatulin TR, Bonetto FJ (1997) Shape of Taylor bubbles in vertical tubes. Int Commun Heat Mass Transf 24:1177–1185CrossRefGoogle Scholar
  30. Ohl GD (2001) Generator for single bubbles of controllable size. Rev Sci Inst 72:252–254CrossRefGoogle Scholar
  31. Rack A, Garcia-Moreno F, Betz O et al (2008) Synchrotron-based radioscopy with spatio-temporal micro-resolution using hard X-rays. In: IEEE Nucl Sci Symp Conf Rec 2008, pp 528–531Google Scholar
  32. Rack A, Weitkamp T, Bauer Trabelsi S et al (2009) The micro-imaging station of the TopoTomo beamline at the ANKA synchrotron light source. Nucl Inst Method Phys Res B 267:1978–1988CrossRefGoogle Scholar
  33. Rack A, Garcia-Moreno F, Schmitt C, Betz O, Cecilia A, Ershov A, Rack T, Banhart J, Zabler S (2010) On the possibilities of hard X-ray imaging with high spatio-temporal resolution using polychromatic synchrotron radiation. J X-Ray Sci Tech 18:429–441Google Scholar
  34. Saisorn S, Wongwises S (2008) A review of two-phase gas-liquid adiabatic flow characteristics in micro-channels. Renew Sustain Energy Rev 12:824–838Google Scholar
  35. Schubert M, Bieberle A, Barthel F, Boden S, Hampel U (2011) Advanced tomographic techniques for flow imaging in columns with flow distributed packings. Chem Ing Tech 83(979):991Google Scholar
  36. Spanne P, Rivers M (1987) Computerized microtomography using synchrotron radiation from the NLSL. Nucl Inst Methods Phys Res 24–25:1063–1067CrossRefGoogle Scholar
  37. Thulasidas TC, Abraham MA, Cerro RL (1995) Bubble-train flow in capillaries of circular and square cross-section. Chem Eng Sci 50:183–199CrossRefGoogle Scholar
  38. Tibiricá CB, do Nascimento FJ, Ribatski G (2010) Film thickness measurement techniques applied to micro-scale two-phase flow systems. Exp Therm Fluid Sci 34:463–473CrossRefGoogle Scholar
  39. Uesugi K, Tsuchiyama A, Nakano T, Suzuki Y, Yagi N, Umetani K, Kohmura Y (1999) Development of microtomography imaging system for rock and mineral samples. Proc SPIE 3772:214–221CrossRefGoogle Scholar
  40. Uesugi K, Sera T, Yagi N (2006) Fast tomography using quasi-monochromatic undulator radiation. J Synchrotron Radiat 13:403–407CrossRefGoogle Scholar
  41. Vidal FP, Létang JM, Peix G, Cloetens P (2005) Investigation of artefact sources in synchrotron microtomography via virtual X-ray imaging. Nucl Inst Methods Phys Res B 234:333–348CrossRefGoogle Scholar
  42. Waelchli S, von Rohr PR, Stampanoni M (2005) Multiphase flow visualization in microchannels using X-ray tomographic microscopy (XTM). J Flow Vis Image Proc 12:1–13CrossRefGoogle Scholar
  43. Weitkamp T, Raven C, Snigirev A (1999) An imaging and microtomography facility at the ESRF beamline ID22. Proc SPIE 3772:311–317CrossRefGoogle Scholar
  44. Wong H, Radke CJ, Morris S (1995) The motion of long bubbles in polygonal capillaries. Part 1. Thin films. J Fluid Mech 292:71–94CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stephan Boden
    • 1
  • Tomy dos Santos Rolo
    • 2
  • Tilo Baumbach
    • 2
  • Uwe Hampel
    • 1
    • 3
  1. 1.Institute of Fluid DynamicsHelmholtz-Zentrum Dresden – Rossendorf (HZDR)DresdenGermany
  2. 2.Institute for Photon Science and Synchrotron Radiation (IPS)Karlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany
  3. 3.AREVA Endowed Chair of Imaging Techniques in Energy and Process EngineeringTechnische Universität Dresden (TUD)DresdenGermany

Personalised recommendations