Advertisement

Experiments in Fluids

, 55:1746 | Cite as

Multi-time-lag PIV analysis of steady and pulsatile flows in a sidewall aneurysm

  • P. Bouillot
  • O. Brina
  • R. Ouared
  • K. O. Lovblad
  • V. Mendes Pereira
  • M. Farhat
Research Article

Abstract

The effect of inflow waveform on the hemodynamics of a real-size idealized sidewall intracranial aneurysm (IA) model was investigated using particle imaging velocimetry (PIV). For this purpose, we implemented an error analysis based on several PIV measurements with different time lags to ensure high precision of velocity fields measured in both the IA and the parent artery. The relative error measured in the main part of the circulating volume was <1 % despite the three orders of magnitude difference of parent artery and IA dome velocities. Moreover, important features involved in IA evolution were potentially emphasized from the qualitative and quantitative flow pattern comparison resulting from steady and unsteady inflows. In particular, the flow transfer in IA and the vortical structure were significantly modified when increasing the number of harmonics for a typical physiological flow, in comparison with quasi-steady conditions.

Keywords

Particle Imaging Velocimetry Particle Imaging Velocimetry Measurement Parent Artery Intracranial Aneurysm Main Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank the technical support of the LMH for the realization of the experimental setup. P. Bouillot thanks the Vasco Sanz Foundation for its support.

Supplementary material

348_2014_1746_MOESM1_ESM.avi (2.3 mb)
Supplementary material 1 (avi 2337 KB)
348_2014_1746_MOESM2_ESM.avi (2.3 mb)
Supplementary material 2 (avi 2343 KB)
348_2014_1746_MOESM3_ESM.avi (2.3 mb)
Supplementary material 3 (avi 2341 KB)

References

  1. Cebral JR, Mut F, Weir J, Putman C (2011) Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am J Neuroradiol 32(1):145–151Google Scholar
  2. de Rooij NK, Linn FHH, van der Plas JA, Algra A, Rinkel GJE (2007) Incidence of subarachnoid haemorrhage: a systematic review with emphasis on region, age, gender and time trends. J Neurol Neurosurg Psychiatr 78(12):1365–1372CrossRefGoogle Scholar
  3. Ford MD, Lee SW, Lownie SP, Holdsworth DW, Steinman DA (2008a) On the effect of parent-aneurysm angle on flow patterns in basilar tip aneurysms: Towards a surrogate geometric marker of intra-aneurismal hemodynamics. J Biomech 41(2):241–248CrossRefGoogle Scholar
  4. Ford MD, Nikolov HN, Milner JS, Lownie SP, DeMont EM, Kalata W, Loth F, Holdsworth DW, Steinman DA (2008b) Piv-measured versus cfd-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J Biomech Eng-T ASME 130(2):021015Google Scholar
  5. Gosling RG, King DH (1974) Arterial assessment by doppler-shift ultrasound. Proc R Soc Med 67(6 Pt 1):447–449Google Scholar
  6. Hain R, Kaehler CJ (2007) Fundamentals of multiframe particle image velocimetry (piv). Exp Fluids 42(4):575–587CrossRefGoogle Scholar
  7. He X, Ku DN (1994) Unsteady entrance flow development in a straight tube. J Biomech Eng-T ASME 116(3):355–360CrossRefGoogle Scholar
  8. Hoi Y, Woodward SH, Kim M, Taulbee DB, Meng H (2006) Validation of cfd simulations of cerebral aneurysms with implication of geometric variations. J Biomech Eng-T ASME 128(6):844–851CrossRefGoogle Scholar
  9. Le TB, Borazjani I, Sotiropoulos F (2010) Pulsatile flow effects on the hemodynamics of intracranial aneurysms. J Biomech Eng-T ASME 132(11):111009Google Scholar
  10. Le TB, Troolin DR, Amatya D, Longmire EK, Sotiropoulos F (2013) Vortex phenomena in sidewall aneurysm hemodynamics: experiment and numerical simulation. Ann Biomed Eng 41(10):2157–2170Google Scholar
  11. Liou T, Liao C (1997) Flowfields in lateral aneurysm models arising from parent vessels with different curvatures using ptv. Exp Fluids 23(4):288–298CrossRefGoogle Scholar
  12. Liou TM, Yi-Chen L, Juan WC (2007) Numerical and experimental studies on pulsatile flow in aneurysms arising laterally from a curved parent vessel at various angles. J Biomech 40(6):1268–1275CrossRefGoogle Scholar
  13. Liu W, Ribeiro E (2010) Scale and rotation invariant detection of singular patterns in vector flow fields. Springer, BerlinGoogle Scholar
  14. Lu G, Huang L, Zhang XL, Wang SZ, Hong Y, Hu Z, Geng DY (2011) Influence of hemodynamic factors on rupture of intracranial aneurysms: Patient-specific 3d mirror aneurysms model computational fluid dynamics simulation. AJNR Am J Neuroradiol 32(7):1255–1261CrossRefGoogle Scholar
  15. Marquering HA, van Ooij P, Streekstra GJ, Schneiders JJ, Majoie CB, vanBavel E, Nederveen AJ (2011) Multiscale flow patterns within an intracranial aneurysm phantom. IEEE T Bio-Med Eng 58(12, 2):3447–3450Google Scholar
  16. Meyer F (1994) Topographic distance and watershed lines. Signal Processing 38(1):113–125CrossRefzbMATHGoogle Scholar
  17. Morino T, Tanoue T, Tateshima S, Vinuela F, Tanishita K (2010) Intra-aneurysmal blood flow based on patient-specific ct angiogram. Exp Fluids 49(2):485–496CrossRefGoogle Scholar
  18. Morita A, Kirino T, Hashi K, Aoki N, Fukuhara S, Hashimoto N, Nakayama T, Sakai M, Teramoto A, Tominari S, Yoshimoto T (2012) The natural course of unruptured cerebral aneurysms in a japanese cohort. N Engl J Med 366(26):2474–2482CrossRefGoogle Scholar
  19. Mulder G, Bogaerds ACB, Rongen P, van de Vosse FN (2009) On automated analysis of flow patterns in cerebral aneurysms based on vortex identification. J Eng Math 64(4):391–401CrossRefzbMATHGoogle Scholar
  20. Pereira F, Ciarravano A, Romano G, Di Felice F (2004) Adaptive multi-frame piv. In: Adaptive multi-frame PIV. In: 12th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal, 12–15 July 2004Google Scholar
  21. Pereira VM, Bonnefous O, Ouared R, Brina O, Stawiaski J, Aerts H, Ruijters D, Narata AP, Bijlenga P, Schaller K, Lovblad KO (2013) A dsa-based method using contrast-motion estimation for the assessment of the intra-aneurysmal flow changes induced by flow-diverter stents. AJNR Am J Neuroradiol 34(4):808–815CrossRefGoogle Scholar
  22. Pereira VM, Brina O, Bijlanga P, Bouillot P, Narata AP, Schaller K, Lovblad KO, Ouared R (2014) Wall shear stress distribution of small aneurysms prone to rupture: a case control study. Stroke 45(1):261–264CrossRefGoogle Scholar
  23. Pozrikidis C (1994) Shear flow over a plane wall with an axisymmetric cavity or a circular orifice of finite thickness. Phys Fluids 6(1):68–79CrossRefzbMATHMathSciNetGoogle Scholar
  24. Raffel M, Willert C, Wereley S, Kompenhans J (2007) Particle image velocimetry. Springer, HeidelbergGoogle Scholar
  25. Raschi M, Mut F, Byrne G, Putman CM, Tateshima S, Vinuela F, Tanoue T, Tanishita K, Cebral JR (2012) Cfd and piv analysis of hemodynamics in a growing intracranial aneurysm. Int J Numer Method Biomed Eng 28(2):214–228CrossRefzbMATHGoogle Scholar
  26. Reymond P, Merenda F, Perren F, Ruefenacht D, Stergiopulos N (2009) Validation of a one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol 297(1):H208–H222CrossRefGoogle Scholar
  27. Tanoue T, Tateshima S, Villablanca JP, Vinuela F, Tanishita K (2011) Wall shear stress distribution inside growing cerebral aneurysm. Am J Neuradiol 32(9):1732–1737CrossRefGoogle Scholar
  28. Tateshima S, Vinuela F, Villablanca J, Murayama Y, Morino T, Nomura K, Tanishita K (2003) Three-dimensional blood flow analysis in a wide-necked internal carotid artery-ophthalmic artery aneurysm. J Neurosurg 99(3):526–533CrossRefGoogle Scholar
  29. Tateshima S, Tanishita K, Omura H, Villablanca JP, Vinuela F (2007) Intra-aneurysmal hemodynamics during the growth of an unruptured aneurysm: In vitro study using longitudinal ct angiogram database. Am J Neuroradiol 28(4):622–627Google Scholar
  30. Tateshima S, Tanishita K, Omura H, Sayre J, Villablanca JP, Martin N, Vinuela F (2008) Intra-aneurysmal hemodynamics in a large middle cerebral artery aneurysm with wall atherosclerosis. Surg Neurol 70(5):454–462CrossRefGoogle Scholar
  31. Ugron A, Farinas MI, Kiss L, Paal G (2012) Unsteady velocity measurements in a realistic intracranial aneurysm model. Exp Fluids 52(1):37–52CrossRefGoogle Scholar
  32. Vlak MHM, Algra A, Brandenburg R, Rinkel GJE (2011) Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol 10(7):626–636CrossRefGoogle Scholar
  33. van de Vosse F, van Dongen M (1998) Cardiovascular fluid mechanics. Eindhoven University of Technology. http://www.mate.tue.nl/people/vosse/docs/cardio.pdf
  34. Xiang J, Tutino V, Snyder K, Meng H (2014) Cfd: Computational fluid dynamics or confounding factor dissemination? the role of hemodynamics in intracranial aneurysm rupture risk assessment. Am J Neuradiol [Epub ahead of print]Google Scholar
  35. Yamaguchi R, Ujiie H, Haida S, Nakazawa N, Hori T (2008) Velocity profile and wall shear stress of saccular aneurysms at the anterior communicating artery. Heart Vessels 23(1):60–66CrossRefGoogle Scholar
  36. Yu S, Zhao J (1999) Steady and pulsating flow characteristics in straight tubes with and without a lateral circular protrusion. Exp Fluids 26(6):505–512CrossRefGoogle Scholar
  37. Zhang Z (2010) LDA application methods. Springer, HeidelbergCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • P. Bouillot
    • 1
    • 2
  • O. Brina
    • 1
  • R. Ouared
    • 1
  • K. O. Lovblad
    • 1
  • V. Mendes Pereira
    • 1
  • M. Farhat
    • 2
  1. 1.Interventional Neuroradiology Unit, Service of NeuroradiologyUniversity Hospitals of GenevaGenevaSwitzerland
  2. 2.Laboratory for Hydraulic Machines (LMH)École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations