Experiments in Fluids

, 55:1737

Measurement of atmospheric boundary layer based on super-large-scale particle image velocimetry using natural snowfall

  • M. Toloui
  • S. Riley
  • J. Hong
  • K. Howard
  • L. P. Chamorro
  • M. Guala
  • J. Tucker
Research Article

DOI: 10.1007/s00348-014-1737-1

Cite this article as:
Toloui, M., Riley, S., Hong, J. et al. Exp Fluids (2014) 55: 1737. doi:10.1007/s00348-014-1737-1

Abstract

We present an implementation of super-large-scale particle image velocimetry (SLPIV) to characterize spatially the turbulent atmospheric boundary layer using natural snowfall as flow tracers. The SLPIV technique achieves a measurement area of ~22 m × 52 m, up to 56 m above the ground, with a spatial resolution of ~0.34 m. The traceability of snow particles is estimated based on their settling velocity obtained from the wall-normal component of SLPIV velocity measurements. The results are validated using coincident measurements from sonic anemometers on a meteorological tower situated in close proximity to the SLPIV sampling area. A contrast of the mean velocity and the streamwise Reynolds stress component obtained from the two techniques shows less than 3 and 12 % difference, respectively. Additionally, the turbulent energy spectra measured by SLPIV show a similar inertial subrange and trends when compared to those measured by the sonic anemometers.

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. Toloui
    • 1
    • 2
  • S. Riley
    • 1
    • 2
  • J. Hong
    • 1
    • 2
  • K. Howard
    • 1
    • 3
  • L. P. Chamorro
    • 1
    • 4
  • M. Guala
    • 1
    • 3
  • J. Tucker
    • 1
  1. 1.Saint Anthony Falls LaboratoryMinneapolisUSA
  2. 2.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Civil EngineeringUniversity of MinnesotaMinneapolisUSA
  4. 4.Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations