Experiments in Fluids

, 55:1713 | Cite as

Oblique impacts of water drops onto hydrophobic and superhydrophobic surfaces: outcomes, timing, and rebound maps

  • C.  Antonini
  • F. Villa
  • M. Marengo
Research Article


This paper presents an experimental study on water drop oblique impacts onto hydrophobic and superhydrophobic tilted surfaces, with the objective of understanding drop impact dynamics and the conditions for drop rebound on low wetting surfaces. Drop impact experiments were performed with millimetric water drops with Weber numbers in the range 25 < We < 585, using different surfaces with advancing contact angles 111° < θ A < 160° and receding contact angles 104° < θ R < 155°. The analysis of oblique impacts onto tilted surfaces led to the definition of six different impact regimes: deposition, rivulet, sliding, rolling, partial rebound, and rebound. For superhydrophobic surfaces, surface tilting generally enhanced drop rebound and shedding from the surface, either by reducing drop rebound time up to 40 % or by allowing drop rebound even when impalement occurred in the vicinity of the impact region. On hydrophobic surfaces, rebound was never observed for tilt angles higher than 45°.


Contact Angle Tilt Angle Weber Number Superhydrophobic Surface Contact Angle Hysteresis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge Regione Lombardia for funding the project “Strumenti innovativi per il progetto di sistemi antighiaccio per l’aeronautica” (within the Framework Agreement) and Alenia Aermacchi for financial support. CA acknowledges funding by a Marie Curie Intra-European Fellowship, within the 7th European Community Framework Programme (ICE2, 301174). The authors also thank I. Bernagozzi and I. Malavasi (University of Bergamo), H. Chen (University of Alberta, Canada) and A. Amirfazli (University of York, Canada) for sample preparation. CA acknowledges Daniele Foresti (ETH Zurich) for helpful discussions.


  1. Abuku M, Janssen H, Poesen J, Roels S (2009) Impact, absorption and evaporation of raindrops on building facades. Build Environ 44:113–124CrossRefGoogle Scholar
  2. Antonini C, Innocenti M, Horn T, Marengo M, Amirfazli A (2011) Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold Reg Sci Technol 67:58–67CrossRefGoogle Scholar
  3. Antonini C, Amirfazli A, Marengo M (2012) Drop impact and wettability: from hydrophilic to superhydrophobic surfaces. Phys Fluids 24:102104Google Scholar
  4. Antonini C, Bernagozzi I, Jung S, Poulikakos D, Marengo M (2013a) Water drops dancing on ice: how sublimation leads to drop rebound. Phys Rev Lett 111:014501CrossRefGoogle Scholar
  5. Antonini C, Villa F, Bernagozzi I, Amirfazli A, Marengo M (2013b) Drop rebound after impact: the role of receding contact angle. Langmuir 29:16045–16050CrossRefGoogle Scholar
  6. Antonini C, Lee JB, Maitra T, Irvine S, Derome D, Tiwari MK, Carmeliet J, Poulikakos D (2014) Unraveling wetting transition through surface textures with X-rays: liquid meniscus penetration phenomena. Sci Rep 4:4055CrossRefGoogle Scholar
  7. Bartolo D, Bouamrirene F, Verneuil É, Buguin A, Silberzan P, Moulinet S (2006) Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces. Europhys Lett 74:299–305CrossRefGoogle Scholar
  8. Bhushan B, Jung YC, Koch K (2009) Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Phil Trans R Soc A 367:1631–1672CrossRefGoogle Scholar
  9. Dewitte J, Berthoumieu P, Lavergne G (2011) Drop impact on a heated wall—influence of ambient pressure. Proceedings of 24th ILASS Europe conference, Estoril, Portugal, September 2011Google Scholar
  10. Huanchen C, Tang T, Amirfazli A (2012) Fabrication of polymeric surfaces with similar contact angles but dissimilar contact angle hysteresis. Colloid Surf A 408:17–21CrossRefGoogle Scholar
  11. Li W, Amirfazli A (2005) A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces. J Colloid Interface Sci 292:195–201CrossRefGoogle Scholar
  12. Li N, Zhou Q, Chen X, Xu T, Hui S, Zhang D (2008) Liquid drop impact on solid surface with application to water drop erosion on turbine blades, part I: nonlinear wave model and solution of one-dimensional impact. Int J Mech Sci 50:1526–1542CrossRefzbMATHGoogle Scholar
  13. Liu Y, Chen X, Xin JH (2009) Can superhydrophobic surfaces repel hot water? J Mater Chem 19:5602–5611CrossRefGoogle Scholar
  14. Maitra T, Tiwari MK, Antonini C, Schoch P, Jung S, Eberle P, Poulikakos D (2014) On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature. Nano Lett 14(1):172–182CrossRefGoogle Scholar
  15. Mandre S, Mani M, Brenner MP (2009) Precursors to splashing of liquid droplets on a solid surface. Phys Rev Lett 102:13CrossRefGoogle Scholar
  16. Mao T, Kuhn DCS, Tran H (1997) Spread and rebound of liquid droplets upon impact on flat surfaces. AIChE J 43:2169–2179CrossRefGoogle Scholar
  17. Marengo M, Antonini C, Roisman IV, Tropea C (2011) Drop collisions with simple and complex surfaces. Curr Opin Colloid Interface Sci 16:292–302CrossRefGoogle Scholar
  18. Okumura K, Chevy F, Richard D, Quéré D, Clanet C (2003) Water spring: a model for bouncing drops. Europhys Lett 62:237–243Google Scholar
  19. Papadopoulos P, Mammen L, Deng X, Vollmer D, Butt HJ (2013) How superhydrophobicity breaks down. Proc Natl Acad Sci USA 110(9):3254–3258CrossRefGoogle Scholar
  20. Pasandideh-Fard M, Aziz SD, Chandra S, Mostaghimi J (2001) Cooling effectiveness of a water drop impinging on a hot surface. Int J Heat Fluid Fl 22:201–210CrossRefGoogle Scholar
  21. Quéré D (2005) Non-sticking drops. Rep Prog Phys 68:2495CrossRefGoogle Scholar
  22. Reyssat M, Pèrin A, Marty F, Chen Y, Quéré D (2006) Bouncing transitions in microtextured materials. Europhys Lett 74:306–312CrossRefGoogle Scholar
  23. Richard D, Clanet C, Quéré D (2002) Contact time of a bouncing drop. Nature 417:811CrossRefGoogle Scholar
  24. Rioboo R, Marengo M, Tropea C (2001) Outcomes from a drop impact on solid surfaces. Atomization Spray 11:155–165Google Scholar
  25. Rioboo R, Voué M, Vaillant A, De Coninck J (2008) Drop impact on porous superhydrophobic polymer surfaces. Langmuir 24:14074–14077CrossRefGoogle Scholar
  26. Rioboo R, Delattre B, Duvivier D, Vaillant A, De Coninck J (2012) Superhydrophobicity and liquid repellency of solutions on polypropylene. Adv Colloid Interface Sci 175:1–10Google Scholar
  27. Schiaffino S, Sonin AA (1997) Molten droplet deposition and solidification at low Weber numbers. Phys Fluids 9:3172–3187CrossRefGoogle Scholar
  28. Šikalo Š, Tropea C, Ganić EN (2005a) Dynamic wetting angle of a spreading droplet. Exp Therm Fluid Sci 29:795–802CrossRefGoogle Scholar
  29. Šikalo Š, Tropea C, Ganić EN (2005b) Impact of droplets onto inclined surfaces. J Colloid Interface Sci 286:661–669CrossRefGoogle Scholar
  30. Yarin AL (2006) Drop impact dynamics: splashing, spreading, receding, bouncing. Annu Rev Fluid Mech 38:159–192CrossRefMathSciNetGoogle Scholar
  31. Zhou Q, Li N, Chen X (2008) Liquid drop impact on solid surface with application to water drop erosion on turbine blades, part II: axisymmetric solution and erosion analysis. Int J Mech Sci 50:1543–1558CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of EngineeringUniversity of BergamoDalmineItaly
  2. 2.Laboratory of Thermodynamics in Emerging Technologies, Mechanical and Process Engineering DepartmentETH ZurichZurichSwitzerland
  3. 3.School of Computing, Engineering and MathematicsUniversity of BrightonBrightonUK

Personalised recommendations