Experiments in Fluids

, 55:1708 | Cite as

Lagrangian measurements of the fast evaporation of falling diethyl ether droplets using in-line digital holography and a high-speed camera

  • J. L. Marié
  • N. Grosjean
  • L. Méès
  • M. Seifi
  • C. Fournier
  • B. Barbier
  • M. Lance
Research Article

Abstract

The evaporation of falling diethyl ether droplets is measured by following droplets along their trajectories. Measurements are performed at ambient temperature and pressure by using in-line digital holography. The holograms of droplets are recorded with a single high-speed camera and reconstructed with an “inverse problems” approach algorithm previously tested (Chareyron et al. New J Phys 14:43039, 2012). Once evaporation starts, the interfaces of the droplets are surrounded by air/vapor mixtures with refractive index gradients that modify the holograms. The central part of the droplets holograms is unusually bright compared to what is expected and observed for non-evaporating droplets. The reconstruction process is accordingly adapted to measure the droplets diameter along their trajectory. The diethyl ether being volatile, the droplets are found to evaporate in a very short time: of the order of 70 ms for a 50–60 μm diameter at an ambient temperature of 25 °C. After this time, the diethyl ether has fully evaporated and droplets diameter reaches a plateau. The remaining droplets are then only composed of water, originating from the cooling and condensation of the humid air at the droplet surface. This assertion is supported by two pieces of evidence: (i) by estimating the evolution of droplets refractive index from light scattering measurements at rainbow angle and (ii) by comparing the evaporation rate and droplets velocities obtained by digital holography with those calculated with a simple model of evaporation/condensation. The overall results show that the in-line digital holography with “inverse problems” approach is an accurate technique for studying fast evaporation from a Lagrangian point of view.

Notes

Acknowledgments

This work takes place in the MORIN project (3D Optical Measurements for Research and INdustry). It has been founded by the “Programme Avenir Lyon Saint-Etienne” of Lyon University in the framework of “investissement d’avenir” (ANR-11-IDEX-0007). This work has been also supported by ANR program TEC2 (Turbulence Evaporation and Condensation).

References

  1. Abramzon B, Sirignano WA (1989) Droplet vaporization model for spray combustion calculations. Int J Heat Mass Transf 32(9):1605–1618CrossRefGoogle Scholar
  2. Airy GB (1838) On the intensity of light in the neighbourhood of a caustic. Trans Camb Phil Soc 6(3):379–402Google Scholar
  3. Bird RB, Stewart WE, Lightfoot EN (1960) Transport Phenomena. Wiley, New YorkGoogle Scholar
  4. Birouk M, Gökalp I (2006) Current status of droplet evaporation in turbulent flows. Prog Energy Comb Sci 32(4):408–423CrossRefGoogle Scholar
  5. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  6. Bourgoin M, Ouellette NT, Xu H, Berg J, Bodenschatz E (2006) The role of pair dispersion in turbulent flow. Science 311:835–838CrossRefGoogle Scholar
  7. Chareyron D, Marié JL, Fournier C, Gire J, Grosjean N, Denis L, Lance M, Méès L (2012) Testing an in-line digital holography “inverse method” for the Lagrangian tracking of evaporating droplets in homogeneous nearly-isotropic turbulence. New J Phys 14, 43039Google Scholar
  8. Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic Press, New YorkGoogle Scholar
  9. Fournier C, Denis L, Fournel T (2010) On the single point resolution of on-axis digital holography. J Opt Soc Am A 27(8):1856–1862CrossRefGoogle Scholar
  10. Fournier C, Denis L, Thiébaut E, Fournel T, Seifi M (2011) Inverse problems approaches for digital hologram reconstruction. In: Three dimensional imaging, visualization, and display 2011, Orlando, United States, vol 8043, pp 1–14.Google Scholar
  11. Frössling N (1938) Über die verdunstung fallender tropfen. Gerlands Beitr Geophys 52:170–216Google Scholar
  12. Garcia-Sucerquia J, Xu W, Jericho SK, Klages P, Jericho MH, Kreuzer HJ (2006) Digital in-line holographic microscopy. Appl Opt 45(5):836–850CrossRefGoogle Scholar
  13. Gire J, Denis L, Fournier C, Thiébaut E, Soulez F, Ducottet C (2008) Digital holography of particles: benefits of the “inverse-problem“ approach. M, Sci Technol 19(7):074005Google Scholar
  14. Glover AR, Skippon SM, Boyle RD (1995) Interferometric laser imaging for droplet sizing: a method for droplet-size measurement in sparse spray systems. Appl Opt 34(36):8409–8421CrossRefGoogle Scholar
  15. Gopalan B, Malkiel E, Katz J (2008) Experimental investigation of turbulent diffusion of slightly buoyant droplets in locally isotropic turbulence. Phys Fluids 20(9):095102Google Scholar
  16. Green DW, Perry RH (2008) Perry’s chemical engineer’s handbook, eight edn. Mc Graw Hill, New YorkGoogle Scholar
  17. Guella S, Alexandrova S, Saboni A (2008) Evaporation d’une gouttelette en chute libre dans l’air. Int J Therm Sci 47(7):886–898CrossRefGoogle Scholar
  18. Han X, Ren KF, Wu ZS, Corbin F, Gouesbet G, Gréhan G (1998) Characterization of initial disturbances in liquid jet by rainbow sizing. Appl Opt 37(36):8498–8503CrossRefGoogle Scholar
  19. Han X, Ren KF, Méès L, Gouesbet G (2001) Surface waves/geometrical rays interferences: numerical and experimental behavior at rainbow angles. Optics Commun 195(1–4):49–54CrossRefGoogle Scholar
  20. Hubbard GL, Denny VE, Mills AF (1975) Droplet evaporation: effects of transients and variable properties. Int J Heat Mass Transf 18:1003–1008CrossRefGoogle Scholar
  21. Katz J, Sheng J (2010) Applications of holography in fluid mechanics and particle dynamics. Annu Rev Fluid Mech 42:531–555CrossRefGoogle Scholar
  22. Law CK (1982) Recent advances in droplet vaporization and combustion. Prog Energy Combust Sci 8(3):171–201CrossRefGoogle Scholar
  23. Law CK, Xiong TY, Wang CH (1987) Alcohol droplet vaporization in humid air. Int J Heat Mass Transf 30(7):1435–1443CrossRefGoogle Scholar
  24. Lebrun D, Allano D, Méès L, Walle F, Corbin F, Boucheron R, Fréchou D (2011) Size measurement of bubbles in a cavitation tunnel by digital in-line holography. Appl Opt 50(34):H1–H9CrossRefGoogle Scholar
  25. Lu J, Fugal JP, Nordsiek H, Saw EW, Shaw RA, Yang W (2008), Lagrangian particle tracking in three dimensions via single-camera in-line digital holography. New J Phys 10, 125013Google Scholar
  26. Méès L, Grosjean N, Chareyron D, Marié JL, Seifi M, Fournier C (2013) Evaporating droplet hologram simulation for digital in-line holography set-up with divergent beam. J Opt Soc Am A 30(10):2021–2028CrossRefGoogle Scholar
  27. Meng X, Zheng P, Wu J, Liu Z (2008) Density and viscosity measurements of diethyl ether from 243 to 373K and up to 20 MPa. Fluid Phase Equilib 271:1–5CrossRefGoogle Scholar
  28. Mordant N, Lévèque E, Pinton JF (2004) Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence. New J Phys 6:116CrossRefGoogle Scholar
  29. Nguyen D, Honnery D, Soria J (2011) Measuring evaporation of micro-fuel droplets using magnified dih and dpiv. Exp Fluids 50(4):949–959CrossRefGoogle Scholar
  30. Ragucci R, Cavaliere A, Massoli P (1990) Drop sizing by laser light scattering exploiting intensity angular oscillation in the mie regime. Part Part Syst Charact 7(1–4):221–225CrossRefGoogle Scholar
  31. Ranz WE, Marshall WR (1952) Evaporation from drops. Chem Eng Prog 48(141–146):173–180Google Scholar
  32. Reveillon J, Demoulin FX (2007) Effects of the preferential segregation of droplets on evaporation and turbulent mixing. J Fluid Mech 583:273–302CrossRefMATHGoogle Scholar
  33. Royer H (1974) An application of high-speed microholography: the metrology of fogs. Nouv Rev Opt 5(2):87–93CrossRefGoogle Scholar
  34. Saengkaew S, Charinpanitkul T, Vanisri H, Tanthapanichakoon W, Biscos Y, Garcia N, Lavergne G, Méès L, Gouesbet G, Gréhan G (2007) Rainbow refractrometry on particles with radial refractive index gradients. Exp in Fluids 43(4):595–601CrossRefGoogle Scholar
  35. Seifi M, Fournier C, Grosjean N, Méès L, Marié JL, Denis L (2013) Accurate 3D tracking and size measurement of evaporating droplets using an in-line digital holography and “inverse problems” reconstruction approach. Opt Express 21(23). doi:10.1364/OE.21.027964
  36. Sirignano WA (1983) Fuel droplet vaporization and spray combustion theory. Progr Energy Comb Sci 9(4):291–322CrossRefGoogle Scholar
  37. Soulez F, Denis L, Fournier C, Thiébaut E, Goepfert C (2007a) Inverse-problem approach for particle digital holography: accurate location based on local optimization. J Opt Soc Am A 24(4):1164–1171CrossRefGoogle Scholar
  38. Soulez F, Denis L, Thiébaut E, Fournier C, Goepfert C (2007b) Inverse problem approach in particle digital holography: out-of-field particle detection made possible. J Opt Soc Am A 24(12):3708–3716CrossRefGoogle Scholar
  39. Toker GR, Stricker J (1996) Holographic study of suspended vaporizing volatile liquid droplets in still air. Int J Heat Mass Transf 39(16):3475–3482CrossRefGoogle Scholar
  40. Toker GR, Stricker J (1998) Study of suspended vaporizing volatile liquid droplets by an enhanced sensitivity holographic technique: additional results. Int J Heat Mass Transf 41(16):2553–2555CrossRefGoogle Scholar
  41. Toschi F, Bodenschatz E (2009) Lagrangian properties of particles in turbulence. Annu Rev Fluid Mech 41:375–404CrossRefMathSciNetGoogle Scholar
  42. Tropea C (2011) Optical particle characterization in flows. Annu Rev Fluid Mech 43:399–426CrossRefGoogle Scholar
  43. Tsilingiris PT (2008) Thermophysical and transport properties of humid air at temperature range between 0 and 100 °C. Energy Convers Manag 49(5):1098–1110CrossRefGoogle Scholar
  44. Tyler GA, Thompson BJ (1976) Fraunhofer holography applied to particle size analysis a reassessment. J Mod Opt 23(9):685–700Google Scholar
  45. van Beeck JPAJ, Riethmuller ML (1996) Rainbow phenomena applied to the measurement of droplet size and velocity and to the detection of nonsphericity. Appl Opt 35(13):2259–2266CrossRefGoogle Scholar
  46. van de Hulst HC (1957) Light scattering by small particles. Wiley, New YorkGoogle Scholar
  47. Vikram CS, Billet ML (1988) Some salient features of in-line fraunhofer holography with divergent beams. Optik 78(2):80–83Google Scholar
  48. Volk R, Mordant N, Verhille G, Pinton JF (2008), Laser Doppler measurement of inertial particle and bubble accelerations in turbulence. EPL 81:34002Google Scholar
  49. Voth GA, Laporta A, Crawford AM, Alexander J, Bodenschatz E (2002) Measurement of particle acceleration in fully developed turbulence. J Fluid Mech 469:121–160CrossRefMATHGoogle Scholar
  50. Wassiljewa A (1904) Wärmeleitung in gasgemischen. Physikalische Zeitschrift 5(22):737–742MATHGoogle Scholar
  51. Wilke CR (1950) A viscosity equation for gas mixtures. J Chem Phys 18(4):517CrossRefGoogle Scholar
  52. Yuen M, Chen LW (1976) On drag of evaporating droplets. Combut Sci and Technol 14(4–6):147–154CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • J. L. Marié
    • 1
  • N. Grosjean
    • 1
  • L. Méès
    • 1
  • M. Seifi
    • 2
  • C. Fournier
    • 2
  • B. Barbier
    • 1
  • M. Lance
    • 1
  1. 1.Laboratoire de Mécanique des Fluides et d’Acoustique UMR5509, CNRSEcole Centrale de Lyon, Université Claude Bernard Lyon 1, INSA LyonEcully cedexFrance
  2. 2.Laboratoire Hubert Curien UMR5516CNRS, Université Jean MonnetSt EtienneFrance

Personalised recommendations