Experiments in Fluids

, 55:1678 | Cite as

Application of high-speed digital holographic interferometry for the analysis of temperature distributions and velocity fields in subcooled flow boiling

Research Article

Abstract

Holographic interferometry can be used to visualize density fields in fluids, and thus give insight into temperature distributions in flows. A fully digital reconstruction technique for holographic interferograms is presented that allows to create high-speed interferometric recordings and gives time-resolved information about heat transfer processes. The technique can also be used for a sequential (image to image) analysis of the recordings, which offers higher sensitivity and fewer errors due to optical impurities. Experiments are conducted with a vertical flow boiling channel with one heated wall, using a low boiling fluorocarbon as working liquid in regimes of steady-state nucleate boiling at critical heat flux (CHF), steady-state film boiling and CHF transient. Recording frequencies are up to 7,000 fps. The technique is used to analyze boiling processes at different fluid subcoolings with and without added turbulence. The results give enhanced insight into the temperature distributions, effects of different flow inserts and mechanisms of heat transfer in flow boiling at high heat fluxes. Furthermore, a velocimetric application of the technique is presented using cross-correlation for tracing of density gradients both in boiling and unheated flows. This application gives insight to the velocity distributions in the liquid surrounding the vapor layer. The results show good comparison to particle image velocimetry measurements for the same setup.

References

  1. Bloch G, Jenke C, Kuczaty J, Böck L, Sattelmayer T (2012) Einsatz von digitaler holografischer Interferometrie zur Erfassung von Temperaturgradienten und Wrmetransport in Siedevorgngen. In: Lasermethoden in der Strmungsmesstechnik. Rostock, GermanyGoogle Scholar
  2. Bloch G, Loth J, Bruder M, Sattelmayer T (2012) Effects of turbulence and longitudinal vortices on vapor distribution and heat fluxes in subcooled flow boiling. In: Proceedings of ECI 8th boiling and condensation. Lausanne, SwitzerlandGoogle Scholar
  3. Bloch G, Muselmann W, Saier M, Sattelmayer T (2013) A phenomenological study on effects leading to the departure from nucleate boiling in subcooled flow boiling. Int J Heat Mass Transf 67:61–69CrossRefGoogle Scholar
  4. Bloch G, Sattelmayer, T (2014) Effects of turbulence and secondary flows on subcooled flow boiling. Heat Mass Transf 9Google Scholar
  5. Bloch G, Schmitt D, Sattelmayer T (2011) Influence of turbulence induced by perforated plates on heat transfer and critical heat flux in subcooled flow boiling. In: Proceedings of ITP-2011, Dresden, GermanyGoogle Scholar
  6. Desse JM, Deron R (2009) Shadow schlieren and color interferometry. Onera J Aerosp Lab 1:1–10Google Scholar
  7. Desse JM, Picart P, Tankam P (2008) Digital three-color holographic interferometry for flow analysis. Opt Express 16(8):5471–5480CrossRefGoogle Scholar
  8. Galloway J, Mudawar I (1993) CHF mechanism in flow boiling from a short heated wall—I. Examination of near-wall conditions with the aid of photomicrography and high-speed video imaging. Int J Heat Mass Transf 36:2511–2526CrossRefGoogle Scholar
  9. Galloway J, Mudawar I (1993) CHF mechanism in flow boiling from a short heated wall—II. Theoretical CHF model. Int J Heat Mass Transf 36:2527–2540CrossRefGoogle Scholar
  10. Gersey CO, Mudawar I (1995) Effects of heater length and orientation on the trigger mechanism for near-saturated flow boiling critical heat flux—I. Critical heat fux model. lnt J Heat Mass Transf 38:643–654CrossRefGoogle Scholar
  11. Hargather MJ, Lawson MJ, Settles GS, Weinstein LM (2011) Seedless velocimetry measurements by schlieren image velocimetry. AIAA J 49(3):611–620CrossRefGoogle Scholar
  12. Ilchenko V (2007) Digitale holographische Geschwindigkeitsmessung mittels Kreuzkorrelation und Partikelverfolgung (DHPIV). Ph.D. thesis, Technische Universitt MnchenGoogle Scholar
  13. Jonassen DR, Settles GS, Tronosky MD (2006) Schlieren "PIV" for turbulent flows. Opt Lasers Eng 44(3–4):190–207CrossRefGoogle Scholar
  14. Kreis T (1986) Digital holographic interference-phase measurement using the Fourier-transform method. Opt Soc Am 3:847–855CrossRefGoogle Scholar
  15. Kreis TM, Adams M, Jüptner WP(1997) Methods of digital holography: a comparison. Proc PIE 3098:224–233Google Scholar
  16. Lehner M, Mewes D, Dinglreiter U, Tauscher R (1999) Applied optical measurements. Springer, BerlinCrossRefMATHGoogle Scholar
  17. Lucic A, Mayinger F (2010) Transport phenomena in subcooled flow boiling. Heat Mass Transf 46:1159–1166CrossRefGoogle Scholar
  18. Martínez-González A, Guerrero-Viramontes JA, Moreno-Hernández, D (2012) Temperature and velocity measurement fields of fluids using a schlieren system. Appl Opt 51(16):3519–3525Google Scholar
  19. Mayinger F, Feldmann O (2001) Optical measurements—techniques and applications. Springer, BerlinGoogle Scholar
  20. PIVLab developed by Dipl. Biol. William Thielicke and Prof. Dr. Stamhuis EJ Copyright (c) (2009) Thielicke W http://pivlab.blogspot.de/
  21. Schnars U (1994) Direct phase determination in hologram interferometry with use of digitally recorded holograms. J Opt Soc Am A (JOSA A) 11:2011–2015CrossRefGoogle Scholar
  22. Schnars U, Jüptner W (2005) Digital holography. Springer, BerlinGoogle Scholar
  23. Tauscher R, Mayinger F (1999) Visualization of flow temperature fields by holographic interferometery—optimization of compact heat exchangers. In: Proceedings of PSFVIP-2Google Scholar
  24. Verrier N, Atlan M (2011) Off-axis digital hologram reconstruction: some practical considerations. Appl Opt 50(34):136–146CrossRefGoogle Scholar
  25. Zhang, H, Mudawar, I, Hasan, MM (2004) Investigation of interfacial behavior during the flow boiling CHF transient. Int J Heat Mass Transf 47:1275–1288CrossRefGoogle Scholar
  26. Zhang H, Mudawar I, Hasan MM (2007) Photographic study of high-flux subcooled flow boiling and critical heat flux. Int Commun Heat Mass Transf 34:653–660CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gregor Bloch
    • 1
  • Julian Kuczaty
    • 1
  • Thomas Sattelmayer
    • 1
  1. 1.Lehrstuhl für ThermodynamikTechnische Universität MünchenGarching bei MünchenGermany

Personalised recommendations