Experiments in Fluids

, 55:1652 | Cite as

A study of gas bubbles in liquid mercury in a vertical Hele-Shaw cell

  • B. Klaasen
  • F. Verhaeghe
  • B. Blanpain
  • J. Fransaer
Research Article

Abstract

High-quality observations of mesoscopic gas bubbles in liquid metal are vital for a further development of pyrometallurgical gas injection reactors. However, the opacity of metals enforces the use of indirect imaging techniques with limited temporal or spatial resolution. In addition, accurate interface tracking requires tomography which further complicates the design of a high-temperature experimental setup. In this paper, an alternative approach is suggested that circumvents these two main restrictions. By injecting gas in a thin layer of liquid metal entrapped between two flat and closely spaced plates, bubbles in a Hele-Shaw flow regime are generated. The resulting quasi-2D multiphase flow phenomena can be fully captured from a single point of view and, when using a non-wetted transparent plate material, the bubbles can be observed directly. The feasibility of this approach is demonstrated by observations on buoyancy-driven nitrogen bubbles in liquid mercury in a vertical Hele-Shaw cell. By using a moving high-speed camera to make continuous close up recordings of individual bubbles, the position and geometry of these bubbles are quantified with a high resolution along their entire path. After a thorough evaluation of the experimental accuracy, this information is used for a detailed analysis of the bubble expansion along the path. While the observed bubble growth is mainly caused by the hydrostatic pressure gradient, a careful assessment of the volume variations for smaller bubbles shows that an accurate bubble description should account for significant dynamic pressure variations that seem to be largely regime dependent.

Keywords

Contact Angle Liquid Metal Bubble Size Small Bubble Bubbly Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by the Agency for Innovation by Science and Technology in Flanders and by Umicore Group Research and Development (IWT Baekeland mandate 090271).

References

  1. Baker MC, Bonazza R (1998) Visualization and measurements of void fraction in a gas-molten tin multiphase system by X-ray absorption. Exp Fluids 25(1):61–68. doi: 10.1007/s003480050208 CrossRefGoogle Scholar
  2. Bauer M, Eigenberger G (2001) Multiscale modeling of hydrodynamics, mass transfer and reaction in bubble column reactors. Chem Eng Sci 56(3):1067–1074. doi: 10.1016/S0009-2509(00)00323-7 CrossRefGoogle Scholar
  3. Beavers GS, Sparrow EM, Magnuson RA (1970) Experiments on breakdown of laminar flow in a parallel-plate channel. Int J Heat Mass Tran 13(5):809–815. doi: 10.1016/0017-9310(70)90127-4 CrossRefGoogle Scholar
  4. Bouche E, Roig V, Risso F, Billet AM (2012) Homogeneous swarm of high-Reynolds-number bubbles rising within a thin gap. Part 1. Bubble dynamics. J Fluid Mech 704:211–231. doi: 10.1017/Jfm.233 CrossRefMATHGoogle Scholar
  5. Boyer C, Duquenne AM, Wild G (2002) Measuring techniques in gas-liquid and gas-liquid-solid reactors. Chem Eng Sci 57(16):3185–3215. doi: 10.1016/S0009-2509(02)00193-8 CrossRefGoogle Scholar
  6. Bush JWM (1997) The anomalous wake accompanying bubbles rising in a thin gap: a mechanically forced Marangoni flow. J Fluid Mech 352:283–303. doi: 10.1017/S0022112097007350 CrossRefMATHGoogle Scholar
  7. Bush JWM, Eames I (1998) Fluid displacement by high Reynolds number bubble motion in a thin gap. Int J Multiphas Flow 24(3):411–430. doi: 10.1016/S0301-9322(97)00068-2 CrossRefMATHGoogle Scholar
  8. Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles. Academic Press, LondonGoogle Scholar
  9. de Gennes PG, Brochard-Wyart F, Quere D (2003) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer, New YorkGoogle Scholar
  10. Eck W, Siekmann J (1978) Bubble motion in a Hele-Shaw cell, a possibility to study 2-phase flows under reduced gravity. Ing Arch 47(3):153–168CrossRefMATHGoogle Scholar
  11. Engh TA, Simensen CJ, Wijk O (1992) Principles of metal refining. Oxford Unversity Press, Oxford, UKGoogle Scholar
  12. Fu QA, Evans JW (1999) A capacitance probe for measurement of bubbles in molten metals. ISIJ Int 39(4):309–318. doi: 10.2355/isijinternational.39.309 CrossRefGoogle Scholar
  13. Grechko AV (2000) Prospects for the use of bubbling processes in pyrometallurgy. Metallurgist +44(3–4):151–154. doi: 10.1007/Bf02466165
  14. He YQ, Bi QC, Shi DX (2011) Dynamics of a single air bubble rising in a thin gap filled with magnetic fluids. Fluid Dyn Mater Process 7(4):357–370Google Scholar
  15. Heindel TJ (2011) A review of X-ray flow visualization with applications to multiphase flows. J Fluid Eng-T Asme 133(7). doi: 10.1115/1.4004367
  16. Huisman SG, Ern P, Roig V (2012) Interaction and coalescence of large bubbles rising in a thin gap. Phys Rev E 85(2). doi: 10.1103/Physreve.85.027302
  17. Iguchi M, Ilegbusi OJ (2011) Modeling multiphase materialsprocesses: gas-liquid systems. Springer, New YorkCrossRefGoogle Scholar
  18. Iguchi M, Chihara T, Takanashi N, Ogawa Y, Tokumitsu N, Morita Z (1995) X-ray fluoroscopic observation of bubble characteristics in a molten iron bath. ISIJ Int 35(11):1354–1361. doi: 10.2355/isijinternational.35.1354 CrossRefGoogle Scholar
  19. Iguchi M, Nakatani T, Kawabata H (1997) Development of a multineedle electroresistivity probe for measuring bubble characteristics in molten metal baths. Metall Mater Trans B 28(3):409–416. doi: 10.1007/s11663-997-0106-3 CrossRefGoogle Scholar
  20. Jakobsen HA, Lindborg H, Dorao CA (2005) Modeling of bubble column reactors: progress and limitations. Ind Eng Chem Res 44(14):5107–5151. doi: 10.1021/Ie049447x CrossRefGoogle Scholar
  21. Johann W, Siekmann J (1978) Migration of a bubble with adsorbed film in a Hele-Shaw cell. Acta Astronaut 5(9):687–704. doi: 10.1016/0094-5765(78)90048-6 CrossRefGoogle Scholar
  22. Kawaguchi M, Niga S, Gou N, Miyake K (2006) Buoyancy-driven path instabilities of bubble rising in simple and polymer solutions of Hele-Shaw cell. J Phys Soc Jpn 75(12). doi: 10.1143/Jpsj.75.124401
  23. Kelley E, Wu MM (1997) Path instabilities of rising air bubbles in a Hele-Shaw cell. Phys Rev Lett 79(7):1265–1268. doi: 10.1103/PhysRevLett.79.1265 CrossRefGoogle Scholar
  24. Kopf-Sill AR, Homsy GM (1988) Bubble motion in a Hele-Shaw cell. Phys Fluids 31(1):18–26. doi: 10.1063/1.866566 CrossRefGoogle Scholar
  25. Kozuka H, Ikeda Y, Kawaguchi M (2009) Path instabilities of bubble rising in polymer solutions of Hele-Shaw cell. J Phys Soc Jpn 78(11). doi: 10.1143/Jpsj.78.114604
  26. Marashdeh Q, Fan LS, Du B, Warsito W (2008) Electrical capacitance tomography—a perspective. Ind Eng Chem Res 47(10):3708–3719. doi: 10.1021/Ie0713590 CrossRefGoogle Scholar
  27. Maxworthy T (1986) Bubble formation, motion and interaction in a Hele-Shaw cell. J Fluid Mech 173:95–114. doi: 10.1017/S002211208600109x CrossRefGoogle Scholar
  28. Mazumdar D, Evans JW (2004) Macroscopic models for gas stirred ladles. ISIJ Int 44(3):447–461. doi: 10.2355/isijinternational.44.447 CrossRefGoogle Scholar
  29. Munshi P, Jayakumar P, Satyamurthy P, Thiyagarajan TK, Dixit NS, Venkatramani N (1998) Void-fraction measurements in a steady-state mercury-nitrogen flow loop. Exp Fluids 24(5–6):424–430. doi: 10.1007/s003480050192 CrossRefGoogle Scholar
  30. Oryall GN, Brimacombe JK (1976) Physical behavior of a gas-jet injected horizontally into liquid-metal. Metall Trans B 7(3):391–403. doi: 10.1007/Bf02652710 CrossRefGoogle Scholar
  31. Paneni M, Davenport WG (1969) Dynamics of bubbles in liquid metals—two-dimensional experiments. Trans Met Soc AIME 245(4):735–738Google Scholar
  32. Park CW, Maruvada SRK, Yoon DY (1994) The influence of surfactant on the bubble motion in Hele-Shaw cells. Phys Fluids 6(10):3267–3275. doi: 10.1063/1.868059 CrossRefGoogle Scholar
  33. Roig V, Roudet M, Risso F, Billet AM (2012) Dynamics of a high-Reynolds-number bubble rising within a thin gap. J Fluid Mech 707:444–466. doi: 10.1017/Jfm.289 CrossRefMATHGoogle Scholar
  34. Saito Y, Mishima K, Tobita Y, Suzuki T, Matsubayashi M, Lim IC, Cha JE (2005) Application of high frame-rate neutron radiography to liquid-metal two-phase flow research. Nucl Instrum Meth A 542(1–3):168–174. doi: 10.1016/j.nima.2005.01.095 CrossRefGoogle Scholar
  35. Saito Y, Shen X, Mishima K, Matsubayashi M (2009) Shape measurement of bubble in a liquid metal. Nucl Instrum Meth A 605(1–2):192–196. doi: 10.1016/j.nima.2009.01.168 CrossRefGoogle Scholar
  36. Salmas C, Androutsopoulos G (2001) Mercury porosimetry: contact angle hysteresis of materials with controlled pore structure. J Colloid Interf Sci 239(1):178–189. doi: 10.1006/jcis.2001.7531 CrossRefGoogle Scholar
  37. Santos LMT, Esteves MTMS, Pinheiro MNC (2008) Effect of gas expansion on the velocity of individual Taylor bubbles rising in vertical columns with water: experimental studies at atmospheric pressure and under vacuum. Chem Eng Sci 63(18):4464–4474. doi: 10.1016/j.ces.2008.06.018 CrossRefGoogle Scholar
  38. Schneider M, Evans JW (2006) A novel probe for detecting gas bubbles in liquid metals. Metall Mater Trans B 37(3):333–337. doi: 10.1007/s11663-006-0018-7 CrossRefGoogle Scholar
  39. Schwerdtfeger K (1968) Velocity of rise of argon bubbles in mercury. Chem Eng Sci 23(8):937–938. doi: 10.1016/0009-2509(68)80030-2 CrossRefGoogle Scholar
  40. Smithwick RW (1988) Contact-angle studies of microscopic mercury droplets on glass. J Colloid Interf Sci 123(2):482–485. doi: 10.1016/0021-9797(88)90269-X CrossRefGoogle Scholar
  41. Span R, Lemmon EW, Jacobsen RT, Wagner W, Yokozeki A (2000) A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 2200 MPa. J Phys Chem Ref Data 29(6):1361–1433. doi: 10.1063/1.1349047 CrossRefGoogle Scholar
  42. Taylor IF, Wright JK, Gray NB (1996) Liquid mixing resulting from reactive gas injection. In: Nilmani M, Lehner T (eds) The Howard Worner international symposium on injection in pyrometallurgy, Melbourne, 1996. Minerals, Metals & Materials Society, pp 163–174Google Scholar
  43. Terzija N, Yin WL, Gerbeth G, Stefani F, Timmel K, Wondrak T, Peyton A (2011) Electromagnetic inspection of a two-phase flow of GaInSn and argon. Flow Meas Instrum 22(1):10–16. doi: 10.1016/j.flowmeasinst.2010.10.003 CrossRefGoogle Scholar
  44. Thiyagarajan TK, Satyamurthy P, Dixit NS, Venkatramani N, Garg A, Kanvinde NR (1995) Void fraction profile measurements in 2-phase mercury-nitrogen flows using gamma-ray attenuation method. Exp Therm Fluid Sci 10(3):347–354. doi: 10.1016/0894-1777(94)00082-J CrossRefGoogle Scholar
  45. Vasil’ev A (2009) From the Hele-Shaw experiment to integrable systems: a historical overview. Complex Anal Oper Theory 3(2):551–585. doi: 10.1007/s11785-008-0104-8 CrossRefMATHMathSciNetGoogle Scholar
  46. Versluis M (2013) High-speed imaging in fluids. Exp Fluids 54(2):1–35. doi: 10.1007/s00348-013-1458-x CrossRefGoogle Scholar
  47. Wang F, Marashdeh Q, Fan LS, Warsito W (2010) Electrical capacitance volume tomography: design and applications. Sensors Basel 10(3):1890–1917. doi: 10.3390/S100301890 CrossRefGoogle Scholar
  48. Yamamoto M, Kawaguchi M (2011) Differences in path instabilities between a bubble rising in water and in aqueous polymer solution in a Hele-Shaw cell in the transient and steady states. J Disper Sci Technol 32(10):1445–1451. doi: 10.1080/01932691.2010.513305 CrossRefGoogle Scholar
  49. Zhang C, Eckert S, Gerbeth G (2007) The flow structure of a bubble-driven liquid-metal jet in a horizontal magnetic field. J Fluid Mech 575:57–82. doi: 10.1017/S0022112006004423 CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • B. Klaasen
    • 1
  • F. Verhaeghe
    • 1
    • 3
  • B. Blanpain
    • 1
  • J. Fransaer
    • 2
  1. 1.Research Group for High Temperature Processes and Industrial Ecology, Department of Metallurgy and Materials EngineeringKU LeuvenLeuvenBelgium
  2. 2.Research Group for Materials with Novel Functionality, Department of Metallurgy and Materials EngineeringKU LeuvenLeuvenBelgium
  3. 3.Umicore Group Research & DevelopmentOlenBelgium

Personalised recommendations