Experiments in Fluids

, 54:1611 | Cite as

Wide band Fresnel super-resolution applied to capillary breakup of viscoelastic fluids

  • Jorge E. Fiscina
  • Pierre Fromholz
  • Rainer Sattler
  • Christian Wagner
Research Article

Abstract

We report a technique based on Fresnel diffraction with white illumination that permits the resolution of capillary surface patterns of <100 nm. We investigate Rayleigh–Plateau-like instability on a viscoelastic capillary bridge and show that we can overcome the resolution limit of optical microscopy. The viscoelastic filaments are approximately 20 μ thick at the end of the thinning process when the instability sets in. The wavy distortions grow exponentially in time and the pattern is resolved by an image treatment that is based on an approximation of the measured rising flank of the first Fresnel peak.

Notes

Acknowledgements

This work was supported by the DFG-Project WA 1336 and Thermo Haake. JF thanks the Alexander von Humboldt foundation, Global Site S.L., and Mrs. Audrey Shaw for the English revision.

References

  1. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung. Arch Mikrosc Anat Entwicklungsmech 9:413CrossRefGoogle Scholar
  2. Betzig E, Trautman JK (1992) Near-Field Optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257:189Google Scholar
  3. Durig U, Pohl DW, Rohner F (1986) Near field optical scanning microscopy. J Appl Phys 59:3318CrossRefGoogle Scholar
  4. Echt E (2002) Principles of optics. 4th edn. Pearson Education, published as Adison Wesley, San FranciscoGoogle Scholar
  5. Eggers J (1993) Universal pinching of 3D axisymmetric free-surface flow. Phys Rev Lett 71:3458CrossRefGoogle Scholar
  6. Eggers J, Villermaux E (2008) Physics of liquid jets. Rep Prog Phys 71:036601CrossRefGoogle Scholar
  7. Fischer UC (1985) Optical characteristics of 0.1 mm circular apertures in a metal film as light sources for scanning ultramicroscopy. J Vac Sci Technol B3:386CrossRefGoogle Scholar
  8. Harrotunian A, Betzig E, Isaacson M, Lewis A (1986) Super‐resolution fluorescence near‐field scanning optical microscopy. Appl Phys Lett 49:674CrossRefGoogle Scholar
  9. Lewis A, Isaacson M, Harroturian A, Muray A (1984) Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures. Ultramicroscopy 13:227CrossRefGoogle Scholar
  10. Montanero JM, Ferrera C, Shevtsova VM (2008) Experimental study of the free surface deformation due to thermal convection in liquid bridges. Exp Fluids 45:1087CrossRefGoogle Scholar
  11. Montanero JM, Vega EJ, Ferrera C (2009) Sub-micrometer precision of optical imaging to locate the free surface of a micrometer fluid shape. J Coll Interface Sci 339:271CrossRefGoogle Scholar
  12. Pohl DW, Denk W, Lank M (1984) Optical stethoscopy: image recording with resolution λ/20. Appl Phys Lett 44:651CrossRefGoogle Scholar
  13. Sattler R, Wagner C, Eggers J (2008) Blistering pattern and formation of nanofibers in capillary thinning of polymer solutions. Phys Rev Lett 100:164502CrossRefGoogle Scholar
  14. Sattler R (2010) Untersuchungen zum kapillaren Abriss vonverdaeunnten und halbkonzentrierten. Polymerloesungen, Universitaet des SaarlandesGoogle Scholar
  15. Sattler R, Gier S, Eggers J, Wagner C (2012) The final stages of capillary break-up of polymer solutions. Phys Fluids 24:023101CrossRefGoogle Scholar
  16. Schäfter and Kirchhoff GmbH (2007) Let there be shadow laser diffraction system for diameter, geometry and edge detection. http://www.SuKHamburg.de
  17. Scharr H (2000) Optimale operatoren in der digitalen bildverarbeitung. Dissertation, Ruprecht-Karls-Universitt HeidelbergGoogle Scholar
  18. Song B, Springer J (1996) Determination of interfacial tension from the profile of a pendant drop using computer-aided image processing. J Coll Interface Sci 184:64Google Scholar
  19. Vega EJ, Montanero JM, Fernandez J (2009) On the precision of optical imaging to study free surface dynamics at high frame rates. Exp Fluids 47:251CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jorge E. Fiscina
    • 1
    • 2
  • Pierre Fromholz
    • 1
    • 3
  • Rainer Sattler
    • 1
  • Christian Wagner
    • 1
  1. 1.ExperimentalphysikUniversität des SaarlandesSaarbrückenGermany
  2. 2.Gravitation GroupTATA Institute of Fundamental ResearchMumbaiIndia
  3. 3.ICFP, Département de PhysiqueEcole Normale supérieureParisFrance

Personalised recommendations