Advertisement

Experiments in Fluids

, 54:1610 | Cite as

Hybrid transition control approach for plasma actuators

  • A. KurzEmail author
  • N. Goldin
  • R. King
  • C. Tropea
  • S. Grundmann
Letter

Abstract

This work reports on the development of a novel hybrid transition control method for single DBD plasma actuators. The experiments have been carried out on a natural laminar flow airfoil in a wind tunnel and combine two methods previously used for transition control purposes with DBD plasma actuators: boundary-layer stabilization by quasi-steady wall-parallel momentum addition, and active wave cancelation by linear superposition utilizing modulated momentum injection. For this purpose, the modulated body force is controlled using an improved extremum seeking controller based on an extended Kalman filter. Combining the two methods in a single actuator has advantages. Applied to 2-D Tollmien–Schlichting waves, the achievable transition delay in hybrid mode is significantly larger than the isolated effects, while the energy consumption remains almost unchanged compared to the case of continuous actuation. For a Reynolds number of \(Re=0.94 \cdot 10^6\), a transition delay of \({\Updelta}x/c=0.242\) could be observed.

Keywords

Extended Kalman Filter Plasma Actuator Transition Delay Disturbance Source Schlichting Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Boeuf JP, Lagmich Y, Unfer Th, Callegari Th, Pitchford LC (2007) Electrohydrodynamic force in dielectric barrier discharge plasma actuators. J Phys D: Appl Phys 40:652-662CrossRefGoogle Scholar
  2. 2.
    Duchmann A, Grundmann S, Tropea C (2013) Delay of Natural Transition with Dielectric Barrier Discharges. Exp. Fluids 54:1461CrossRefGoogle Scholar
  3. 3.
    Duchmann A, Tropea C, Grundmann S (2013) Linear stability analysis of DBD boundary-layer flow-control experiments and simulations. Int J of Flow Control, acceptedGoogle Scholar
  4. 4.
    Gelbert G, Moeck JP, Paschereit CO, King R (2012) Advanced algorithms for gradient estimation in one- and two-parameter extremum seeking controllers. J of Process Control 22:700-709CrossRefGoogle Scholar
  5. 5.
    Goldin N, King R (2012) Learning from Dolphin skin - Drag reduction by active delay of transition flow control by distributed wall actuation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer, USAGoogle Scholar
  6. 6.
    Grundmann S, Tropea C (2009) Experimental Damping of Boundary-Layer Oscillations using DBD Plasma Actuators. Int J of Heat and Fluid Flow 30:394-402CrossRefGoogle Scholar
  7. 7.
    Henning L, Becker R, Feuerbach G, Muminovic R, King R, Brunn A, Nitsche W (2008) Extensions of adaptive slope-seeking for active flow control. Proc IMechE, Part I: J. Systems and Control Engineering 222:309-322CrossRefGoogle Scholar
  8. 8.
    Peltzer I, Pätzold A, Nitsche W (2009) In-flight experiments for delaying laminar-turbulent transition on a laminar wing glove. Proc Inst Mech Eng 223(G):619-626CrossRefGoogle Scholar
  9. 9.
    Séraudie A, Vermeersch O, Arnal D (2011) DBD plasma actuator effect on a 2D model laminar boundary layer. Transition delay under ionic wind effect. Proc 29th AIAA Applied Aerodynamics Conference, AIAA-2011-3515Google Scholar
  10. 10.
    Sturzebecher D, Nitsche W (2003) Active cancelation of Tollmien–Schlichting instabilities on a wing using multi-channel sensor actuator systems. Int J Heat and Fluid Flow 24:572-583CrossRefGoogle Scholar
  11. 11.
    Weismüller M (2012) A new Approach to Aerodynamic Performance of Aircraft under Turbulent Atmospheric Conditions. Dissertation, Technische Universität DarmstadtGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Kurz
    • 1
    Email author
  • N. Goldin
    • 2
  • R. King
    • 2
  • C. Tropea
    • 1
  • S. Grundmann
    • 1
  1. 1.Technische Universität DarmstadtCenter of Smart InterfacesGriesheimGermany
  2. 2.Technische Universität Berlin, Fachgebiet Mess- und RegelungstechnikInstitut für Prozess- und VerfahrenstechnikBerlinGermany

Personalised recommendations